ترغب بنشر مسار تعليمي؟ اضغط هنا

The Resonant Light Absorption by Semiconductor Quantum Dots

184   0   0.0 ( 0 )
 نشر من قبل Stanislav Pavlov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cross section of light absorption by semiconductor quantum dots in the case of the resonance with excitons $Gamma_6 times Gamma_7$ in cubical crystals $T_d$ is calculated. It is shown that an interference of stimulating and induced electric and magnetic fields must be taken into account. The absorption section is proportional to the exciton nonradiative damping $gamma$.



قيم البحث

اقرأ أيضاً

Elastic light scattering by low-dimensional semiconductor objects is investigated theoretically. The differential cross section of resonant light scattering on excitons in quantum dots is calculated. The polarization and angular distribution of scatt ered light do not depend on the quantum-dot form, sizes and potential configuration if light wave lengths exceed considerably the quantum-dot size. In this case the magnitude of the total light scattering cross section does not depend on quantum-dot sizes. The resonant total light scattering cross section is about a square of light wave length if the exciton radiative broadening exceeds the nonradiative broadening. Radiative broadenings are calculated.
We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performin g free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.
108 - Junjie Liu , Dvira Segal 2020
The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a trade-off relation between precision and dissipation, deepening our understanding of the performance of quantum thermal machines. Here, we exam ine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime. To achieve the current statistics, we perform a full counting statistics simulation of the Redfield quantum master equation. We focus on steady-state quantum absorption refrigerators where nonzero coherence between eigenstates can either suppress or enhance the cooling power, compared with the incoherent limit. In either scenario, we find enhanced relative noise of the cooling power (standard deviation of the power over the mean) in the presence of system coherence, thereby corroborating the thermodynamic uncertainty relation. Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
We obtain a microscopic description of the interaction between electron spins in bulk semiconductors and in pairs of semiconductor quantum dots. Treating the k.p band mixing and the Coulomb interaction on the same footing, we obtain in the third orde r an asymmetric contribution to the exchange interaction arising from the coupling between the spin of one electron and the relative orbital motion of the other. This contribution does not depend on the inversion asymmetry of the crystal. We find that it is ~0.001 of the isotropic exchange, which is of interest in quantum information. Detailed evaluations are given for several quantum dot systems.
We report a type of solar cells based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is one-atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the po wer conversion efficiency is increased from 2.08% to 3.1%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by transport, photoluminescence and quantum efficiency measurements. This work demonstrates a feasible way of designing solar cells with incorporating one dimensional and two dimensional materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا