ﻻ يوجد ملخص باللغة العربية
Light reflection and absorption spectra by a semiconductor quantum well (QW), which width is comparable to a light wave length of stimulating radiation, are calculated. A resonance with two close located exited levels is considered. These levels can arise due to splitting of an energy level of an electron-hole pair (EHP) due to magnetopolaron effect, if the QW is in a quantizing magnetic field directed perpendicularly to the QW plane. It is shown that unlike a case of narrow QWs light reflection and absorption depend on a QW width $d$. The theory is applicable at any ratio of radiative and non-radiative broadenings of electronic excitations.
Light reflection and absorption spectra by a semiconductor quantum well (QW) , which width is comparable to a light wave length of stimulating radiation, are calculated. A resonance with two close located exited levels is considered. These levels can
We investigate the time dependent thermal relaxation of a two-dimensional electron system in the fractional quantum Hall regime where ballistic phonons are used to heat up the system to a non-equilibrium temperature. The thermal relaxation of a 2DES
We investigate a singly-charged quantum dot under a strong optical driving field by probing the system with a weak optical field. When the driving field is detuned from the trion transition, the probe absorption spectrum is shifted from the trion res
Tunnel spectroscopy is used to probe the electronic structure in GaAs quantum well of resonant tunnel junction over wide range of energies and magnetic fields normal to layers. Spin degenerated high Landau levels ($N=2div7$) are found to be drastical
The direct-current (dc) $sigma_{xx}^{dc}$ and alternating-current (ac) $sigma_{xx}^{ac}=sigma_1-isigma_2$ conductivities of a wide (46 nm) GaAs quantum well with the bilayer electron density distribution are measured. It is found that the magnetic fi