ﻻ يوجد ملخص باللغة العربية
Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation process is simulated starting from the equilibrium configuration in each case and imposing a high initial temperature to the atoms. Kinetic energy quickly converts into potential energy, so that the system oscillates for some picoseconds and eventually breaks up. The most probable first event for substituted fullerenes is the ejection of a C2 molecule, another very frequent event being that one Si atom goes to an adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they have four or more atoms, while the smaller ones tend to dissociate and sometimes interchange positions with the C atoms. These results are compared with experimental information from mass abundance spectroscopy and the products of photofragmentation.
We have performed longitudinal magnetoresistance measurements on heavily n-doped silicon for donor concentrations exceeding the critical value for the metal-non-metal transition. The results are compared to those from a many-body theory where the don
Well-protected magnetization, tunable quantum states and long coherence time are desired for developing magnetic molecules as qubits quantum information processing and storage. Based on the first-principles calculations and dynamic simulations, we de
To reproduce the diamond structure of silicon, double lattice (DL) potential constructed from two interatomic potentials for face centered cubic (fcc) lattice, is proposed for molecular dynamics (MD) simulations. For the validity test of MD simulatio
Amorphous silicon (a-Si) is a widely studied non-crystalline material, and yet the subtle details of its atomistic structure are still unclear. Here, we show that accurate structural models of a-Si can be obtained by harnessing the power of machine-l
We report a molecular dynamics simulation of melting of tungsten (W) nanoparticles. The modified embedded atom method (MEAM) interatomic potentials are used to describe the interaction between tungsten atoms. The melting temperature of unsupported tu