ﻻ يوجد ملخص باللغة العربية
Well-protected magnetization, tunable quantum states and long coherence time are desired for developing magnetic molecules as qubits quantum information processing and storage. Based on the first-principles calculations and dynamic simulations, we demonstrate that endohedral fullerene molecule Ir@C28 has stable magnetization, huge magnetic anisotropy energy (> 30 meV per molecule) and bias-tunable structural phases. In particular, qubits based on Ir@C28 may have coherence times up to several mS at high temperature (~100K) after full consideration of spin-vibration couplings. These results suggest a new strategy of using endohedral fullerene as qubits for technological breakthroughs.
A new multifunctional 2D material is theoretically predicted based on systematic ab-initio calculations and model simulations for the honeycomb lattice of endohedral fullerene W@C28 molecules. It has structural bistability, ferroelectricity, multiple
In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe+ ion beam was irradiated to C60 thin film by using a deceleration system. Fe+-irradiated C60 thin film was analyzed by high performance
Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation
We discuss the complicated resonance structure of the endohedral atom photoionization cross section. Very strong enhancement and interference patterns in the photoionization cross-section of the valent and subvalent subshells of noble gas endohedral
Paramagnetic molecules can show long spin-coherence times, which make them good candidates as quantum bits. Reducing the efficiency of the spin-phonon interaction is the primary challenge towards achieving long coherence times over a wide temperature