ترغب بنشر مسار تعليمي؟ اضغط هنا

Double lattice potential for molecular dynamics simulation of silicon with demonstrated validity

99   0   0.0 ( 0 )
 نشر من قبل Hui Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To reproduce the diamond structure of silicon, double lattice (DL) potential constructed from two interatomic potentials for face centered cubic (fcc) lattice, is proposed for molecular dynamics (MD) simulations. For the validity test of MD simulation, the Tersoff potential, the Stillinger and Weber (SW) potential, the environment-dependent interatomic (EDI) potential, the charge optimized many-body (COMB) potential, and the modified embedded-atom (MEAM) potential have been also employed for comparison. The crystal lattice of simulated silicon system is identified by calculating the distribution functions of the distances between the atoms and the angles between the lines linking an atom with its nearest neighbors. The results are also compared with the perfect silicon crystal. The crystal lattice, the crystallization temperature, and elastic constants have been calculated from MD simulations using above potentials. The results show that the systems with modified Tersoff, SW, EDI, COMB, and MEAM potentials could not exhibit the diamond structure and only the DL potential gives diamond lattice. The ground state for DL potential is the wurtzite structure, and the metastable state formed during rapid cooling is the cubic diamond structure. The physical parameters obtained from the simulation with DL potential are in agreement with the experiment results. This work indicated that only DL potential is valid for MD simulation of silicon crystal among above various potentials.



قيم البحث

اقرأ أيضاً

By using molecular dynamics simulation, formation mechanisms of amorphous carbon in particular sp${}^3$ rich structure was researched. The problem that reactive empirical bond order potential cannot represent amorphous carbon properly was cleared in the transition process from graphite to diamond by high pressure and the deposition process of amorphous carbon thin films. Moreover, the new potential model which is based on electron distribution simplified as a point charge was developed by using downfolding method. As a result, the molecular dynamics simulation with the new potential could demonstrate the transition from graphite to diamond at the pressure of 15 GPa corresponding to experiment and the deposition of sp${}^3$ rich amorphous carbon.
In this work, the single-component Cu metallic glass was fabricated by the physical vapor deposition on the Zr (0001) crystal substrate at 100 K using the classical molecular dynamic simulation. The same deposition process was performed on the Cu (1 0 0) and Ni (1 0 0) crystal substrate for comparison, only the Cu crystal deposited layer with the fcc structure can be obtained. When depositing the Cu atoms on the Zr substrate at 300 K, the crystal structure was formed, which indicates that except the suitable substrate, low temperature is also a key factor for the amorphous structure formation. The Cu liquid quenching from 2000 K to 100 K were also simulated with the cooling rate 1012 K/s to form the Cu glass film in this work. The Cu metallic glass from the two different processes (physical vapor deposition and rapid thermal quenching from liquid) revealed the same radial distribution function and X-ray diffraction pattern, but the different microstructure from the coordination number and Voronoi tessellation analysis.
Molecular dynamics (MD) simulation based on Langevin equation has been widely used in the study of structural, thermal properties of matters in difference phases. Normally, the atomic dynamics are described by classical equations of motion and the ef fect of the environment is taken into account through the fluctuating and frictional forces. Generally, the nuclear quantum effects and their coupling to other degrees of freedom are difficult to include in an efficient way. This could be a serious limitation on its application to the study of dynamical properties of materials made from light elements, in the presence of external driving electrical or thermal fields. One example of such system is single molecular dynamics on metal surface, an important system that has received intense study in surface science. In this review, we summarize recent effort in extending the Langevin MD to include nuclear quantum effect and their coupling to flowing electrical current. We discuss its applications in the study of adsorbate dynamics on metal surface, current-induced dynamics in molecular junctions, and quantum thermal transport between different reservoirs.
The thermal degradation of a graphene-like two-dimensional triangular membrane with bonds undergoing temperature-induced scission is studied by means of Molecular Dynamics simulation using Langevin thermostat. We demonstrate that the probability dist ribution of breaking bonds is highly peaked at the rim of the membrane sheet at lower temperature whereas at higher temperature bonds break at random anywhere in the hexagonal flake. The mean breakage time $tau$ is found to decrease with the total number of network nodes $N$ by a power law $tau propto N^{-0.5}$ and reveals an Arrhenian dependence on temperature $T$. Scission times are themselves exponentially distributed. The fragmentation kinetics of the average number of clusters can be described by first-order chemical reactions between network nodes $n_i$ of different coordination. The distribution of fragments sizes evolves with time elapsed from a $delta$-function through a bimodal one into a single-peaked again at late times. Our simulation results are complemented by a set of $1^{st}$-order kinetic differential equations for $n_i$ which can be solved exactly and compared to data derived from the computer experiment, providing deeper insight into the thermolysis mechanism.
We present a vibrational dynamical mean-field theory (VDMFT) of the dynamics of atoms in solids with anharmonic interactions. Like other flavors of DMFT, VDMFT maps the dynamics of a periodic anharmonic lattice of atoms onto those of a self-consisten tly defined impurity problem with local anharmonicity and coupling to a bath of harmonic oscillators. VDMFT is exact in the harmonic and molecular limits, nonperturbative, systematically improvable through its clusters extensions, and usable with classical or quantum impurity solvers, depending on the importance of nuclear quantum effects. When tested on models of anharmonic optical and acoustic phonons, we find that classical VDMFT gives good agreement with classical molecular dynamics, including the temperature dependence of phonon frequencies and lifetimes. Using a quantum impurity solver, signatures of nuclear quantum effects are observed at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا