ترغب بنشر مسار تعليمي؟ اضغط هنا

Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics

82   0   0.0 ( 0 )
 نشر من قبل Volker Deringer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Amorphous silicon (a-Si) is a widely studied non-crystalline material, and yet the subtle details of its atomistic structure are still unclear. Here, we show that accurate structural models of a-Si can be obtained by harnessing the power of machine-learning algorithms to create interatomic potentials. Our best a-Si network is obtained by cooling from the melt in molecular-dynamics simulations, at a rate of 10$^{11}$ K/s (that is, on the 10 ns timescale). This structure shows a defect concentration of below 2% and agrees with experiments regarding excess energies, diffraction data, as well as $^{29}$Si solid-state NMR chemical shifts. We show that this level of quality is impossible to achieve with faster quench simulations. We then generate a 4,096-atom system which correctly reproduces the magnitude of the first sharp diffraction peak (FSDP) in the structure factor, achieving the closest agreement with experiments to date. Our study demonstrates the broader impact of machine-learning interatomic potentials for elucidating accurate structures and properties of amorphous functional materials.

قيم البحث

اقرأ أيضاً

Glass transition temperature ($T_{text{g}}$) plays an important role in controlling the mechanical and thermal properties of a polymer. Polyimides are an important category of polymers with wide applications because of their superior heat resistance and mechanical strength. The capability of predicting $T_{text{g}}$ for a polyimide $a~priori$ is therefore highly desirable in order to expedite the design and discovery of new polyimide polymers with targeted properties and applications. Here we explore three different approaches to either compute $T_{text{g}}$ for a polyimide via all-atom molecular dynamics (MD) simulations or predict $T_{text{g}}$ via a mathematical model generated by using machine-learning algorithms to analyze existing data collected from literature. Our simulations reveal that $T_{text{g}}$ can be determined from examining the diffusion coefficient of simple gas molecules in a polyimide as a function of temperature and the results are comparable to those derived from data on polymer density versus temperature and actually closer to the available experimental data. Furthermore, the predictive model of $T_{text{g}}$ derived with machine-learning algorithms can be used to estimate $T_{text{g}}$ successfully within an uncertainty of about 20 degrees, even for polyimides yet to be synthesized experimentally.
Statistical learning methods show great promise in providing an accurate prediction of materials and molecular properties, while minimizing the need for computationally demanding electronic structure calculations. The accuracy and transferability of these models are increased significantly by encoding into the learning procedure the fundamental symmetries of rotational and permutational invariance of scalar properties. However, the prediction of tensorial properties requires that the model respects the appropriate geometric transformations, rather than invariance, when the reference frame is rotated. We introduce a formalism that can be used to perform machine-learning of tensorial properties of arbitrary rank for general molecular geometries. To demonstrate it, we derive a tensor kernel adapted to rotational symmetry, which is the natural generalization of the smooth overlap of atomic positions (SOAP) kernel commonly used for the prediction of scalar properties at the atomic scale. The performance and generality of the approach is demonstrated by learning the instantaneous electrical response of water oligomers of increasing complexity, from the isolated molecule to the condensed phase.
Understanding the structural origins of the properties of amorphous materials remains one of the most important challenges in structural science. In this study we demonstrate that local structural simplicity, embodied by the degree to which atomic en vironments within a material are similar to each other, is powerful concept for rationalising the structure of canonical amorphous material amorphous silicon (a-Si). We show, by restraining a reverse Monte Carlo refinement against pair distribution function (PDF) data to be simpler, that the simplest model consistent with the PDF is a continuous random network (CRN). A further effect of producing a simple model of a-Si is the generation of a (pseudo)gap in the electronic density of states, suggesting that structural homogeneity drives electronic homogeneity. That this method produces models of a-Si that approach the state-of-the-art without the need for chemically specific restraints (beyond the assumption of homogeneity) suggests that simplicity-based refinement approaches may allow experiment-driven structural modelling techniques to be developed for the wide variety of amorphous semiconductors with strong local order.
We introduce a Gaussian approximation potential (GAP) for atomistic simulations of liquid and amorphous elemental carbon. Based on a machine-learning representation of the density-functional theory (DFT) potential-energy surface, such interatomic pot entials enable materials simulations with close-to DFT accuracy but at much lower computational cost. We first determine the maximum accuracy that any finite-range potential can achieve in carbon structures; then, using a novel hierarchical set of two-, three-, and many-body structural descriptors, we construct a GAP model that can indeed reach the target accuracy. The potential yields accurate energetic and structural properties over a wide range of densities; it also correctly captures the structure of the liquid phases, at variance with state-of-the-art empirical potentials. Exemplary applications of the GAP model to surfaces of diamond-like tetrahedral amorphous carbon (ta-C) are presented, including an estimate of the amorphous materials surface energy, and simulations of high-temperature surface reconstructions (graphitization). The new interatomic potential appears to be promising for realistic and accurate simulations of nanoscale amorphous carbon structures.
Amorphous materials are coming within reach of realistic computer simulations, but new approaches are needed to fully understand their intricate atomic structures. Here, we show how machine-learning (ML)-based techniques can give new, quantitative ch emical insight into the atomic-scale structure of amorphous silicon (a-Si). Based on a similarity function (kernel), we define a structural metric that unifies the description of nearest- and next-nearest-neighbor environments in the amorphous state. We apply this to an ensemble of a-Si networks, generated in melt-quench simulations with an ML-based interatomic potential, in which we tailor the degree of ordering by varying the quench rates down to $10^{10}$ K/s (leading to a structural model that is lower in energy than the established WWW network). We then show how machine-learned atomic energies permit a chemical interpretation, associating coordination defects in a-Si with distinct energetic stability regions. The approach is straightforward and inexpensive to apply to arbitrary structural models, and it is therefore expected to have more general significance for developing a quantitative understanding of the amorphous state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا