ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric Evidence of Bullets in SS433 Jet

48   0   0.0 ( 0 )
 نشر من قبل Sandip Chakrabarti
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the photometric evidence of bullet like features in SS433 in X-rays, Infra-red and Radio bands through a multi-wavelength campaign.

قيم البحث

اقرأ أيضاً

In this paper we present our study of the gamma-ray emission from the microquasar SS433. Integrating over 9 years of Fermi-LAT textsc{pass8} data, we detect SS433 with a significance of ~13$sigma$ in the 200 to 500 MeV photon energy range, with evide nce for an extension in the direction of the w1 X-ray `hotspot`. A temporal analysis reveals evidence for modulation of SS433s gamma-ray emission with the precession period of its relativistic jet. This suggests that at least some of SS433s gamma-ray emission originates close to the object rather than from the jet termination regions.
We have carried out a detailed analysis of the NANTEN 12CO(J=1-0) dataset in two large areas of ~25 square degrees towards SS433 (l~40 degree) and of ~18 square degrees towards l~348.5 degree, respectively. We have discovered two groups of remarkably aligned molecular clouds at |b|~1--5 degree in the two regions. In SS433, we have detected 10 clouds in total, which are well aligned nearly along the axis of the X-ray jet emanating from SS433. These clouds have similar line-of-sight velocities of 42--56 km s^-1 and the total projected length of the feature is ~300 pc, three times larger than that of the X-ray jet, at a distance of 3 kpc. Towards l~348.5 degree, we have detected four clouds named as MJG348.5 at line-of-sight velocities of -80 -- -95 km s^-1 in V_LSR, which also show alignment nearly perpendicular to the Galactic plane. The total length of the feature is ~400 pc at a kinematic distance of 6 kpc. In the both cases, the CO clouds are distributed at high galactic latitudes where such clouds are very rare. In addition, their alignments and coincidence in velocity should be even rarer, suggesting that they are physically associated. We tested a few possibilities to explain these clouds, including protostellar outflows, supershells, and interactions with energetic jets. Among them, a favorable scenario is that the interaction between relativistic jet and the interstellar medium induced the formation of molecular clouds over the last ~10^5-6 yrs. It is suggested that the timescale of the relativistic jet may be considerably larger, in the order of 10^5-6 yrs, than previously thought in SS433. The driving engine of the jet is obviously SS433 itself in SS433, although the engine is not yet identified in MJG348.5 among possible several candidates detected in the X-rays and TeV gamma rays.
We report a polarization analysis of the eastern region of W50, observed with the Australia Telescope Compact Array (ATCA) at 1.4 - 3.0 GHz. In order to study the physical structures in the region where the SS433 jet and W50 interact, we obtain an in trinsic magnetic field vector map of that region. We find that the orientation of the intrinsic magnetic field vectors are aligned along the total intensity structures, and that there are characteristic, separate structures related to the jet, the bow shock, and the terminal shock. The Faraday rotation measures (RMs), and the results of Faraday Tomography suggest that a high intensity, filamentary structure in the north-south direction of the eastern-edge region can be separated into at least two parts to the north and south. The results of Faraday Tomography also show that there are multiple components along the line of sight and/or within the beam area. In addition, we also analyze the X-ray ring-like structure observed with XMM-Newton. While the possibility still remains that this X-ray ring is real, it seems that the structure is not ring-like at radio wavelengths. Finally, we suggest that the structure is a part of the helical structure that coils the eastern ear of W50.
Electrically charged particles, moving faster than the speed of light in a medium, emit Cherenkov radiation. Theory predicts electric and magnetic dipoles to radiate as well, with a puzzling behavior for magnetic dipoles pointing in transversal direc tion [I. M. Frank, Izv. Akad. Nauk SSSR, Ser. Fiz. 6, 3 (1942)]. A discontinuous Cherenkov spectrum should appear at threshold, where the particle velocity matches the phase velocity of light. Here we deduce theoretically that light bullets [Y. Silberberg, Opt. Lett. 15, 1282 (1990)] emit an analogous radiation with exactly the same spectral discontinuity for point-like sources. For extended sources the discontinuity turns into a spectral peak at threshold. We argue that this Cherenkov radiation has been experimentally observed in the first attempt to measure Hawking radiation in optics [F. Belgiorno et al., Phys. Rev. Lett. 105, 203901 (2010)] thus giving experimental evidence for a puzzle in Cherenkov radiation instead.
The dynamics of optical switching in semiconductor microcavities in the strong coupling regime is studied using time- and spatially-resolved spectroscopy. The switching is triggered by polarised short pulses which create spin bullets of high polarito n density. The spin packets travel with speeds of the order of 106 m/s due to the ballistic propagation and drift of exciton-polaritons from high to low density areas. The speed is controlled by the angle of incidence of the excitation beams, which changes the polariton group velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا