ﻻ يوجد ملخص باللغة العربية
Electrically charged particles, moving faster than the speed of light in a medium, emit Cherenkov radiation. Theory predicts electric and magnetic dipoles to radiate as well, with a puzzling behavior for magnetic dipoles pointing in transversal direction [I. M. Frank, Izv. Akad. Nauk SSSR, Ser. Fiz. 6, 3 (1942)]. A discontinuous Cherenkov spectrum should appear at threshold, where the particle velocity matches the phase velocity of light. Here we deduce theoretically that light bullets [Y. Silberberg, Opt. Lett. 15, 1282 (1990)] emit an analogous radiation with exactly the same spectral discontinuity for point-like sources. For extended sources the discontinuity turns into a spectral peak at threshold. We argue that this Cherenkov radiation has been experimentally observed in the first attempt to measure Hawking radiation in optics [F. Belgiorno et al., Phys. Rev. Lett. 105, 203901 (2010)] thus giving experimental evidence for a puzzle in Cherenkov radiation instead.
Cherenkov radiation may occur whenever the source is moving faster than the waves it generates. In a radiation dominated universe, with equation-of-state $w = 1/3$, we have recently shown that the Bardeen scalar-metric perturbations contribute to the
In this paper, we analyze the formation and dynamical properties of discrete light bullets (dLBs) in an array of passively mode-locked lasers coupled via evanescent fields in a ring geometry. Using a generic model based upon a system of nearest-neigh
We report measurements that show extreme events in the statistics of resonant radiation emitted from spatiotemporal light bullets. We trace the origin of these extreme events back to instabilities leading to steep gradients in the temporal profile of
The theory of Hawking radiation can be tested in laboratory analogues of black holes. We use light pulses in nonlinear fiber optics to establish artificial event horizons. Each pulse generates a moving perturbation of the refractive index via the Ker
We investigate wave optical imaging of black holes with Hawking radiation. The spatial correlation function of Hawking radiation is expressed in terms of transmission and reflection coefficients for scalar wave modes and evaluated by taking summation