ترغب بنشر مسار تعليمي؟ اضغط هنا

Aligned Molecular Clouds towards SS433 and L=348.5 degrees; Possible Evidence for Galactic Vapor Trail Created by Relativistic Jet

58   0   0.0 ( 0 )
 نشر من قبل Hiroaki Yamamoto
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out a detailed analysis of the NANTEN 12CO(J=1-0) dataset in two large areas of ~25 square degrees towards SS433 (l~40 degree) and of ~18 square degrees towards l~348.5 degree, respectively. We have discovered two groups of remarkably aligned molecular clouds at |b|~1--5 degree in the two regions. In SS433, we have detected 10 clouds in total, which are well aligned nearly along the axis of the X-ray jet emanating from SS433. These clouds have similar line-of-sight velocities of 42--56 km s^-1 and the total projected length of the feature is ~300 pc, three times larger than that of the X-ray jet, at a distance of 3 kpc. Towards l~348.5 degree, we have detected four clouds named as MJG348.5 at line-of-sight velocities of -80 -- -95 km s^-1 in V_LSR, which also show alignment nearly perpendicular to the Galactic plane. The total length of the feature is ~400 pc at a kinematic distance of 6 kpc. In the both cases, the CO clouds are distributed at high galactic latitudes where such clouds are very rare. In addition, their alignments and coincidence in velocity should be even rarer, suggesting that they are physically associated. We tested a few possibilities to explain these clouds, including protostellar outflows, supershells, and interactions with energetic jets. Among them, a favorable scenario is that the interaction between relativistic jet and the interstellar medium induced the formation of molecular clouds over the last ~10^5-6 yrs. It is suggested that the timescale of the relativistic jet may be considerably larger, in the order of 10^5-6 yrs, than previously thought in SS433. The driving engine of the jet is obviously SS433 itself in SS433, although the engine is not yet identified in MJG348.5 among possible several candidates detected in the X-rays and TeV gamma rays.

قيم البحث

اقرأ أيضاً

We report the photometric evidence of bullet like features in SS433 in X-rays, Infra-red and Radio bands through a multi-wavelength campaign.
230 - Gary J. Melnick 2020
The depth-dependent abundance of both gas-phase and solid-state water within dense, quiescent, molecular clouds is important to both the cloud chemistry and gas cooling. Where water is in the gas phase, its free to participate in the network of ion-n eutral reactions that lead to a host of oxygen-bearing molecules, and its many ortho and para energy levels make it an effective coolant for gas temperatures greater than 20K. Where water is abundant as ice on grain surfaces, and unavailable to cool the gas, significant amounts of oxygen are removed from the gas phase, suppressing the gas-phase chemical reactions that lead to a number of oxygen-bearing species, including O2. Models of FUV-illuminated clouds predict that the gas-phase water abundance peaks in the range Av ~3 and 8mag of the cloud surface, depending on the gas density and FUV field strength. Deeper within such clouds, water is predicted to exist mainly as ice on grain surfaces. More broadly, these models are used to analyze a variety of other regions, including outflow cavities associated with young stellar objects and the surface layers of protoplanetary disks. In this paper, we report the results of observational tests of FUV-illuminated cloud models toward the Orion Molecular Ridge and Cepheus B using data obtained from the Herschel Space Observatory and the Five College Radio Astronomy Observatory. Toward Orion, 2220 spatial positions were observed along the face-on Orion Ridge in the H2O 110-101 557GHz and NH3 J,K=1,0-0,0 572GHz lines. Toward Cepheus B, two strip scans were made in the same lines across the edge-on ionization front. These new observations demonstrate that gas-phase water exists primarily within a few magnitudes of dense cloud surfaces, strengthening the conclusions of an earlier study based on a much smaller data set, and indirectly supports the prediction that water ice is quite abundant in dense clouds.
Recent observations of microlensing events in the Large Magellanic Cloud by the MACHO and EROS collaborations suggest that an important fraction of the galactic halo is in form of Massive Astrophysical Compact Halo Objects (MACHOs) with mass ~ 0.1 M_ {odot}. We outline a scenario in which dark clusters of MACHOs and molecular clouds form in the halo at galactocentric distances larger than ~ 10-20 kpc, provide baryons are a major constituent of the halo. Possible signatures of the presence of molecular clouds in our galaxy are discussed. We also discuss how molecular clouds as well as MACHOs can be observed directly in the nearby M31 galaxy.
In this paper we present our study of the gamma-ray emission from the microquasar SS433. Integrating over 9 years of Fermi-LAT textsc{pass8} data, we detect SS433 with a significance of ~13$sigma$ in the 200 to 500 MeV photon energy range, with evide nce for an extension in the direction of the w1 X-ray `hotspot`. A temporal analysis reveals evidence for modulation of SS433s gamma-ray emission with the precession period of its relativistic jet. This suggests that at least some of SS433s gamma-ray emission originates close to the object rather than from the jet termination regions.
Measuring isotopic ratios is a sensitive technique used to obtain information on stellar nucleosynthesis and chemical evolution. We present measurements of the carbon and sulphur abundances in the interstellar medium of the central region of our Gala xy. The selected targets are the +50km/s Cloud and several l.o.s. clouds towards Sgr B2(N). Towards the +50km/s Cloud, we observed the J=2-1 rotational transitions of CS, C34S, 13CS, C33S, and 13C34S, and the J=3-2 transitions of CS and C34S with the IRAM-30m telescope, as well as the J=6-5 transitions of C34S and 13CS with the APEX 12m telescope, all in emission. The J=2-1 rotational transitions of CS, C34S, 13CS, and 13C34S were observed with ALMA in the envelope of Sgr B2(N), with those of CS and C34S also observed in the l.o.s. clouds towards Sgr B2(N), all in absorption. In the +50km/s Cloud we derive a 12C13C isotopic ratio of ~22.1, that leads, with the measured 13CS/C34S line intensity ratio, to a 32S/34S ratio of 16.3+3.0-2.4. We also derive the 32S/34S isotopic ratio more directly from the two isotopologues 13CS and 13C34S, which leads to an independent 32S/34S estimation of 16.3+2.1-1.7 and 17.9+-5.0 for the +50km/s Cloud and Sgr B2(N), respectively. We also obtain a 34S/33S ratio of ~4.3 in the +50 km/s Cloud. Previous studies observed a decreasing trend in the 32S/34S isotopic ratios when approaching the Galactic centre. Our result indicates a termination of this tendency at least at a galactocentric distance of 130-30+60 pc. This is at variance with findings based on 12C/13C, 14N/15N and 18O/17O isotope ratios, where the above-mentioned trend is observed to continue right to the central molecular zone. This can indicate a drop in the production of massive stars at the Galactic centre, in the same line as recent metallicity gradient studies, and opens the work towards a comparison with Galactic and stellar evolution models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا