ﻻ يوجد ملخص باللغة العربية
The dynamics of optical switching in semiconductor microcavities in the strong coupling regime is studied using time- and spatially-resolved spectroscopy. The switching is triggered by polarised short pulses which create spin bullets of high polariton density. The spin packets travel with speeds of the order of 106 m/s due to the ballistic propagation and drift of exciton-polaritons from high to low density areas. The speed is controlled by the angle of incidence of the excitation beams, which changes the polariton group velocity.
Semiconductor microcavities operating in the polaritonic regime are highly non-linear, high speed systems due to the unique half-light, half-matter nature of polaritons. Here, we report for the first time the observation of propagating multi-soliton
We investigate the interactions between exciton-polaritons in N two-dimensional semiconductor layers embedded in a planar microcavity. In the limit of low-energy scattering, where we can ignore the composite nature of the excitons, we obtain exact an
The transmission of a pump laser resonant with the lower polariton branch of a semiconductor microcavity is shown to be highly dependent on the degree of circular polarization of the pump. Spin dependent anisotropy of polariton-polariton interactions
We consider exciton-photon coupling in semiconductor microcavities in which separate periodic potentials have been embedded for excitons and photons. We show theoretically that this system supports degenerate ground-states appearing at non-zero in-pl
The authors report the observation of electroluminescence from GaAs-based semiconductor microcavities in the strong coupling regime. At low current densities the emission consists of two peaks, which exhibit anti-crossing behaviour as a function of d