ﻻ يوجد ملخص باللغة العربية
The DASI discovery of CMB polarization has opened a new chapter in cosmology. Most of the useful information about inflationary gravitational waves and reionization is on large angular scales where Galactic foreground contamination is the worst, so a key challenge is to model, quantify and remove polarized foregrounds. We use the POLAR experiment, COBE/DMR and radio surveys to provide the strongest limits to date on the TE cross power spectrum of the CMB on large angular scales and to quantify the polarized synchrotron radiation, which is likely to be the most challenging polarized contaminant for the MAP satellite. We find that the synchrotron E- and B-contributions are equal to within 10% from 408-820 MHz with a hint of E-domination at higher frequencies. We quantify Faraday Rotation and Depolarization effects in the two-dimensional (l,nu)-plane and show that they cause the synchrotron polarization percentage to drop both towards lower frequencies and towards lower multipoles.
We quantify the level of polarization of the atmosphere due to Zeeman splitting of oxygen in the Earths magnetic field and compare it to the level of polarization expected from the polarization of the cosmic microwave background radiation. The analys
SPOrt (Sky Polarization Observatory) is a space experiment to be flown on the International Space Station during Early Utilization Phase aimed at measuring the microwave polarized emission with FWHM = 7deg, in the frequency range 22-90 GHz. The Galac
We reconsider the pixel-based, template polarized foreground removal method within the context of a next-generation, low-noise, low-resolution (0.5 degree FWHM) space-borne experiment measuring the cosmological B-mode polarization signal in the cosmi
This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise.
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and lar