ترغب بنشر مسار تعليمي؟ اضغط هنا

The large-scale polarization of the microwave background and foreground

76   0   0.0 ( 0 )
 نشر من قبل Angelica De Oliveira-Costa
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The DASI discovery of CMB polarization has opened a new chapter in cosmology. Most of the useful information about inflationary gravitational waves and reionization is on large angular scales where Galactic foreground contamination is the worst, so a key challenge is to model, quantify and remove polarized foregrounds. We use the POLAR experiment, COBE/DMR and radio surveys to provide the strongest limits to date on the TE cross power spectrum of the CMB on large angular scales and to quantify the polarized synchrotron radiation, which is likely to be the most challenging polarized contaminant for the MAP satellite. We find that the synchrotron E- and B-contributions are equal to within 10% from 408-820 MHz with a hint of E-domination at higher frequencies. We quantify Faraday Rotation and Depolarization effects in the two-dimensional (l,nu)-plane and show that they cause the synchrotron polarization percentage to drop both towards lower frequencies and towards lower multipoles.



قيم البحث

اقرأ أيضاً

We quantify the level of polarization of the atmosphere due to Zeeman splitting of oxygen in the Earths magnetic field and compare it to the level of polarization expected from the polarization of the cosmic microwave background radiation. The analys is focuses on the effect at mid-latitudes and at large angular scales. We find that from stratospheric balloon borne platforms and for observations near 100 GHz the atmospheric linear and circular polarized intensities is about 10^{-12} and 100 x 10^{-9} K, respectively, making the atmosphere a negligible source of foreground. From the ground the linear and circular polarized intensities are about 10^{-9} and 100 x 10^{-6} K, making the atmosphere a potential source of foreground for the CMB E (B) mode signal if there is even a 1% (0.01%) conversion of circular to linear polarization in the instrument.
SPOrt (Sky Polarization Observatory) is a space experiment to be flown on the International Space Station during Early Utilization Phase aimed at measuring the microwave polarized emission with FWHM = 7deg, in the frequency range 22-90 GHz. The Galac tic polarized emission can be observed at the lower frequencies and the polarization of Cosmic Microwave Background (CMB) at 90 GHz, where contaminants are expected to be less important. The extremely low level of the CMB Polarization signal (< 1 uK) calls for intrinsically stable radiometers. The SPOrt instrument is expressly devoted to CMB polarization measurements and the whole design has been optimized for minimizing instrumental polarization effects. In this contribution we present the receiver architecture based on correlation techniques, the analysis showing its intrinsic stability and the custom hardware development carried out to detect such a low signal.
We reconsider the pixel-based, template polarized foreground removal method within the context of a next-generation, low-noise, low-resolution (0.5 degree FWHM) space-borne experiment measuring the cosmological B-mode polarization signal in the cosmi c microwave background (CMB). This method was put forward by the Wilkinson Microwave Anisotropy Probe (WMAP) team and further studied by Efstathiou et al. We need at least 3 frequency channels: one is used for extracting the CMB signal, whereas the other two are used to estimate the spatial distribution of the polarized dust and synchrotron emission. No external template maps are used. We extract the tensor-to-scalar ratio (r) from simulated sky maps consisting of CMB, noise (2 micro K arcmin), and a foreground model, and find that, even for the simplest 3-frequency configuration with 60, 100, and 240 GHz, the residual bias in r is as small as Delta r~0.002. This bias is dominated by the residual synchrotron emission due to spatial variations of the synchrotron spectral index. With an extended mask with fsky=0.5, the bias is reduced further down to <0.001.
This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve sigma(sum m_nu) = 16 meV and sigma(N_eff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero sum m_nu, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics --- the origin of mass. This precise a measurement of N_eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N_eff = 3.046.
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and lar ge-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا