ﻻ يوجد ملخص باللغة العربية
We quantify the level of polarization of the atmosphere due to Zeeman splitting of oxygen in the Earths magnetic field and compare it to the level of polarization expected from the polarization of the cosmic microwave background radiation. The analysis focuses on the effect at mid-latitudes and at large angular scales. We find that from stratospheric balloon borne platforms and for observations near 100 GHz the atmospheric linear and circular polarized intensities is about 10^{-12} and 100 x 10^{-9} K, respectively, making the atmosphere a negligible source of foreground. From the ground the linear and circular polarized intensities are about 10^{-9} and 100 x 10^{-6} K, making the atmosphere a potential source of foreground for the CMB E (B) mode signal if there is even a 1% (0.01%) conversion of circular to linear polarization in the instrument.
The DASI discovery of CMB polarization has opened a new chapter in cosmology. Most of the useful information about inflationary gravitational waves and reionization is on large angular scales where Galactic foreground contamination is the worst, so a
We reconsider the pixel-based, template polarized foreground removal method within the context of a next-generation, low-noise, low-resolution (0.5 degree FWHM) space-borne experiment measuring the cosmological B-mode polarization signal in the cosmi
We analyze the effect of polarized diffuse emission in the calibration of wide-beam mm-wave polarimeters, when using the Crab Nebula as a reference source for both polarized brightness and polarization angle. We show that, for CMB polarization experi
We present results obtained with the PRONAOS balloon-borne experiment on interstellar dust. In particular, the submillimeter / millimeter spectral index is found to vary between roughly 1 and 2.5 on small scales (3.5 resolution). This could have impl
We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and cold intergalactic electrons. This signal is of the $y$-type and is dominated