ترغب بنشر مسار تعليمي؟ اضغط هنا

Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

124   0   0.0 ( 0 )
 نشر من قبل Thomas Crawford
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.



قيم البحث

اقرأ أيضاً

This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve sigma(sum m_nu) = 16 meV and sigma(N_eff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero sum m_nu, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics --- the origin of mass. This precise a measurement of N_eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N_eff = 3.046.
We forecast the ability of cosmic microwave background (CMB) temperature and polarization datasets to constrain theories of eternal inflation using cosmic bubble collisions. Using the Fisher matrix formalism, we determine both the overall detectabili ty of bubble collisions and the constraints achievable on the fundamental parameters describing the underlying theory. The CMB signatures considered are based on state-of-the-art numerical relativistic simulations of the bubble collision spacetime, evolved using the full temperature and polarization transfer functions. Comparing a theoretical cosmic-variance-limited experiment to the WMAP and Planck satellites, we find that there is no improvement to be gained from future temperature data, that adding polarization improves detectability by approximately 30%, and that cosmic-variance-limited polarization data offer only marginal improvements over Planck. The fundamental parameter constraints achievable depend on the precise values of the tensor-to-scalar ratio and energy density in (negative) spatial curvature. For a tensor-to-scalar ratio of $0.1$ and spatial curvature at the level of $10^{-4}$, using cosmic-variance-limited data it is possible to measure the width of the potential barrier separating the inflating false vacuum from the true vacuum down to $M_{rm Pl}/500$, and the initial proper distance between colliding bubbles to a factor $pi/2$ of the false vacuum horizon size (at three sigma). We conclude that very near-future data will have the final word on bubble collisions in the CMB.
The standard model of cosmology, {Lambda}CDM, is the simplest model that matches the current observations, but it relies on two hypothetical components, to wit, dark matter and dark energy. Future galaxy surveys and cosmic microwave background (CMB) experiments will independently shed light on these components, but a joint analysis that includes cross-correlations will be necessary to extract as much information as possible from the observations. In this paper, we carry out a multi-probe analysis based on pseudo-spectra and test it on publicly available data sets. We use CMB temperature anisotropies and CMB lensing observations from Planck as well as the spectroscopic galaxy and quasar samples of SDSS-III/BOSS, taking advantage of the large areas covered by these surveys. We build a likelihood to simultaneously analyse the auto and cross spectra of CMB lensing and tracer overdensity maps before running Monte-Carlo Markov Chains (MCMC) to assess the constraining power of the combined analysis. We then add the CMB temperature anisotropies likelihood and obtain constraints on cosmological parameters ($H_0$, $omega_b$, $omega_c$, ${ln10^{10}A_s}$, $n_s$ and $z_{re}$) and galaxy biases. We demonstrate that the joint analysis can additionally constrain the total mass of neutrinos ${Sigma m_{ u}}$ as well as the dark energy equation of state $w$ at once (for a total of eight cosmological parameters), which is impossible with either of the data sets considered separately. Finally, we discuss limitations of the analysis related to, e.g., the theoretical precision of the models, particularly in the non-linear regime.
81 - Luca Amendola 2001
We compare the latest cosmic microwave background data with theoretical predictions including correlated adiabatic and CDM isocurvature perturbations with a simple power-law dependence. We find that there is a degeneracy between the amplitude of corr elated isocurvature perturbations and the spectral tilt. A negative (red) tilt is found to be compatible with a larger isocurvature contribution. Estimates of the baryon and CDM densities are found to be almost independent of the isocurvature amplitude. The main result is that current microwave background data do not exclude a dominant contribution from CDM isocurvature fluctuations on large scales.
The cosmic infrared background (CIB) is a powerful probe of large-scale structure across a very large redshift range, and consists of unresolved redshifted infrared emission from dusty galaxies. It can be used to study the astrophysics of galaxies, t he star formation history of the universe, and the connection between dark and luminous matter. It can furthermore be used as a tracer of the large-scale structure and thus assist in de-lensing of the cosmic microwave background. The major difficulty in its use lies in obtaining accurate and unbiased large-scale CIB images that are cleaned of the contamination by Galactic dust. We used data on neutral atomic hydrogen from the recently-released HI4PI Survey to create template maps of Galactic dust, allowing us to remove this component from the Planck intensity maps from 353 to 857 GHz for approximately $25%$ of the sky. This allows us to constrain the CIB power spectrum down to $ellgtrsim 70$. We present these CIB maps and the various processing and validation steps that we have performed to ensure their quality, as well as a comparison with previous studies. All our data products are made publicly available at https://doi.org/10.7910/DVN/8A1SR3, thereby enabling the community to investigate a wide range of questions related to the universes large-scale structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا