ﻻ يوجد ملخص باللغة العربية
We reconsider the pixel-based, template polarized foreground removal method within the context of a next-generation, low-noise, low-resolution (0.5 degree FWHM) space-borne experiment measuring the cosmological B-mode polarization signal in the cosmic microwave background (CMB). This method was put forward by the Wilkinson Microwave Anisotropy Probe (WMAP) team and further studied by Efstathiou et al. We need at least 3 frequency channels: one is used for extracting the CMB signal, whereas the other two are used to estimate the spatial distribution of the polarized dust and synchrotron emission. No external template maps are used. We extract the tensor-to-scalar ratio (r) from simulated sky maps consisting of CMB, noise (2 micro K arcmin), and a foreground model, and find that, even for the simplest 3-frequency configuration with 60, 100, and 240 GHz, the residual bias in r is as small as Delta r~0.002. This bias is dominated by the residual synchrotron emission due to spatial variations of the synchrotron spectral index. With an extended mask with fsky=0.5, the bias is reduced further down to <0.001.
In order to extract cosmological information from observations of the millimeter and submillimeter sky, foreground components must first be removed to produce an estimate of the cosmic microwave background (CMB). We developed a machine-learning appro
STPpol, POLARBEAR and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the compone
Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial $B$-modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data,
We estimate the B-polarisation induced in the Cosmic Microwave Background by the non-linear evolution of density perturbations. Using the second-order Boltzmann code SONG, our analysis incorporates, for the first time, all physical effects at recombi
Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. Filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signa