ﻻ يوجد ملخص باللغة العربية
We establish that a doping-driven first-order metal-to-metal transition, from a pseudogap metal to Fermi Liquid, can occur in correlated quantum materials. Our result is based on the exact Dynamical Mean Field Theory solution of the Dimer Hubbard Model. This transition elucidates the origin of many exotic features in doped Mott materials, like the pseudogap in cuprates, incoherent bad metals, enhanced compressibility and orbital selective Mott transition. This phenomenon is suggestive to be at the roots of the many exotic phases appearing in the phase diagram of correlated materials.
We study the doping-driven Mott metal-insulator transition for multi-orbital Hubbard models with Hunds exchange coupling at finite temperatures. As in the single-orbital Hubbard model, the transition is of first-order within dynamical mean field theo
We consider how electron-phonon interaction influences the insulator-metal transitions driven by doping in the strongly correlated system. Using the polaronic version of the generalized tight-binding method, we investigate a multiband two-dimensional
Experimental evidence for the possible universality classes of the metal-insulator transition (MIT) in two dimensions (2D) is discussed. Sufficiently strong disorder, in particular, changes the nature of the transition. Comprehensive studies of the c
Experimental results on the metal-insulator transition and related phenomena in strongly interacting two-dimensional electron systems are discussed. Special attention is given to recent results for the strongly enhanced spin susceptibility, effective
Ultrafast electron delocalization induced by a fs laser pulse is a well-known process and is the initial step for important applications such as fragmentation of molecules or laser ablation in solids. It is well understood that an intense fs laser pu