ﻻ يوجد ملخص باللغة العربية
We study the doping-driven Mott metal-insulator transition for multi-orbital Hubbard models with Hunds exchange coupling at finite temperatures. As in the single-orbital Hubbard model, the transition is of first-order within dynamical mean field theory, with a coexistence region where two solutions can be stabilized. We find, that in the presence of finite Hunds coupling, the insulating phase is connected to a badly metallic phase, which extends to surprisingly large dopings. While fractional power-law behavior of the self-energies on the Matsubara axis is found on both sides of the transition, a regime with frozen local moments develops only on the branch connected to the insulating phase.
We establish that a doping-driven first-order metal-to-metal transition, from a pseudogap metal to Fermi Liquid, can occur in correlated quantum materials. Our result is based on the exact Dynamical Mean Field Theory solution of the Dimer Hubbard Mod
We consider how electron-phonon interaction influences the insulator-metal transitions driven by doping in the strongly correlated system. Using the polaronic version of the generalized tight-binding method, we investigate a multiband two-dimensional
Experimental evidence for the possible universality classes of the metal-insulator transition (MIT) in two dimensions (2D) is discussed. Sufficiently strong disorder, in particular, changes the nature of the transition. Comprehensive studies of the c
Characterizing non-local magnetic fluctuations in materials with strong electronic Coulomb interactions remains one of the major outstanding challenges of modern condensed matter theory. In this work we address the spatial symmetry and orbital struct
We point out the generic competition between the Hunds coupling and the spin-orbit coupling in correlated materials, and this competition leads to an electronic dilemma between the Hunds metal and the relativistic insulators. Hunds metals refer to th