ترغب بنشر مسار تعليمي؟ اضغط هنا

Different Hamiltonians for the Painleve ${text{P}_{mathrm{IV}}}$ equation and their identification using a geometric approach

152   0   0.0 ( 0 )
 نشر من قبل Anton Dzhamay
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well-known that differential Painleve equations can be written in a Hamiltonian form. However, a coordinate form of such representation is far from unique -- there are many very different Hamiltonians that result in the same differential Painleve equation. In this paper we describe a systematic procedure of finding changes of coordinates transforming different Hamiltonian systems into some canonical form. Our approach is based on Sakais geometric theory of Painleve equations. We explain our approach using the fourth differential ${text{P}_{mathrm{IV}}}$ equation as an example, but it can be easily adapted to other Painleve equations as well.

قيم البحث

اقرأ أيضاً

In this paper a comprehensive review is given on the current status of achievements in the geometric aspects of the Painleve equations, with a particular emphasis on the discrete Painleve equations. The theory is controlled by the geometry of certain rational surfaces called the spaces of initial values, which are characterized by eight point configuration on $mathbb{P}^1timesmathbb{P}^1$ and classified according to the degeration of points. We give a systematic description of the equations and their various properties, such as affine Weyl group symmetries, hypergeomtric solutions and Lax pairs under this framework, by using the language of Picard lattice and root systems. We also provide with a collection of basic data; equations, point configurations/root data, Weyl group representations, Lax pairs, and hypergeometric solutions of all possible cases.
Discrete Painleve equations are nonlinear, nonautonomous difference equations of second-order. They have coefficients that are explicit functions of the independent variable $n$ and there are three different types of equations according to whether th e coefficient functions are linear, exponential or elliptic functions of $n$. In this paper, we focus on the elliptic type and give a review of the construction of such equations on the $E_8$ lattice. The first such construction was given by Sakai cite{SakaiH2001:MR1882403}. We focus on recent developments giving rise to more examples of elliptic discrete Painleve equations.
In the present paper, we study the defocusing complex short pulse (CSP) equations both geometrically and algebraically. From the geometric point of view, we establish a link of the complex coupled dispersionless (CCD) system with the motion of space curves in Minkowski space $mathbf{R}^{2,1}$, then with the defocusing CSP equation via a hodograph (reciprocal) transformation, the Lax pair is constructed naturally for the defocusing CSP equation. We also show that the CCD system of both the focusing and defocusing types can be derived from the fundamental forms of surfaces such that their curve flows are formulated. In the second part of the paper, we derive the the defocusing CSP equation from the single-component extended KP hierarchy by the reduction method. As a by-product, the $N$-dark soliton solution for the defocusing CSP equation in the form of determinants for these equations is provided.
This paper is an addendum to earlier papers cite{R1,R2} in which it was shown that the unstable separatrix solutions for Painleve I and II are determined by $PT$-symmetric Hamiltonians. In this paper unstable separatrix solutions of the fourth Painle ve transcendent are studied numerically and analytically. For a fixed initial value, say $y(0)=1$, a discrete set of initial slopes $y(0)=b_n$ give rise to separatrix solutions. Similarly, for a fixed initial slope, say $y(0)=0$, a discrete set of initial values $y(0)=c_n$ give rise to separatrix solutions. For Painleve IV the large-$n$ asymptotic behavior of $b_n$ is $b_nsim B_{rm IV}n^{3/4}$ and that of $c_n$ is $c_nsim C_{rm IV} n^{1/2}$. The constants $B_{rm IV}$ and $C_{rm IV}$ are determined both numerically and analytically. The analytical values of these constants are found by reducing the nonlinear Painleve IV equation to the linear eigenvalue equation for the sextic $PT$-symmetric Hamiltonian $H=frac{1}{2} p^2+frac{1}{8} x^6$.
111 - Nalini Joshi 2013
The classical Painleve equations are so well known that it may come as a surprise to learn that the asymptotic description of its solutions remains incomplete. The problem lies mainly with the description of families of solutions in the complex domai n. Where asymptotic descriptions are known, they are stated in the literature as valid for large connected domains, which include movable poles of families of solutions. However, asymptotic analysis necessarily assumes that the solutions are bounded and so these domains must be punctured at locations corresponding to movable poles, leading to asymptotic results that may not be uniformly valid. To overcome these issues, we recently carried out asymptotic analysis in Okamotos geometric space of initial values for the first and second Painleve equations. In this paper, we review this method and indicate how it may be extended to the discrete Painleve equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا