ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric formulation and multi-dark soliton solution to the defocusinig complex short pulse equation

147   0   0.0 ( 0 )
 نشر من قبل Bao-Feng Feng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present paper, we study the defocusing complex short pulse (CSP) equations both geometrically and algebraically. From the geometric point of view, we establish a link of the complex coupled dispersionless (CCD) system with the motion of space curves in Minkowski space $mathbf{R}^{2,1}$, then with the defocusing CSP equation via a hodograph (reciprocal) transformation, the Lax pair is constructed naturally for the defocusing CSP equation. We also show that the CCD system of both the focusing and defocusing types can be derived from the fundamental forms of surfaces such that their curve flows are formulated. In the second part of the paper, we derive the the defocusing CSP equation from the single-component extended KP hierarchy by the reduction method. As a by-product, the $N$-dark soliton solution for the defocusing CSP equation in the form of determinants for these equations is provided.



قيم البحث

اقرأ أيضاً

In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirotas bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two- component semi-discrete NLS equation; two-bright-one-dark, and one-bright-two-dark soliton solutions are also given explicitly for three-component semi-discrete NLS equation. The asymptotic behavior is analysed for two-soliton solutions.
We employ the $bar{partial}$-steepest descent method in order to investigate the Cauchy problem of the complex short pulse (CSP) equation with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb {R})}$. The long time asymptotic behavior of the solution $u(x,t)$ is derived in a fixed space-time cone $S(x_{1},x_{2},v_{1},v_{2})={(x,t)inmathbb{R}^{2}: y=y_{0}+vt, ~y_{0}in[y_{1},y_{2}], ~vin[v_{1},v_{2}]}$. Based on the resulting asymptotic behavior, we prove the solution resolution conjecture of the CSP equation which includes the soliton term confirmed by $N(I)$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-1})$.
We study the integrability and equivalence of a generalized Heisenberg ferromagnet-type equation (GHFE). The different forms of this equation as well as its reduction are presented. The Lax representation (LR) of the equation is obtained. We observe that the geometrical and gauge equivalent counterpart of the GHFE is the modified Camassa-Holm equation (mCHE) with an arbitrary parameter $kappa$. Finally, the 1-soliton solution of the GHFE is obtained.
In classical shallow water wave (SWW) theory, there exist two integrable one-dimensional SWW equation [Hirota-Satsuma (HS) type and Ablowitz-Kaup-Newell-Segur (AKNS) type] in the Boussinesq approximation. In this paper, we mainly focus on the integra ble SWW equation of AKNS type. The nonlocal symmetry in form of square spectral function is derived starting from its Lax pair. Infinitely many nonlocal symmetries are presented by introducing the arbitrary spectrum parameter. These nonlocal symmetries can be localized and the SWW equation is extended to enlarged system with auxiliary dependent variables. Then Darboux transformation for the prolonged system is found by solving the initial value problem. Similarity reductions related to the nonlocal symmetry and explicit group invariant solutions are obtained. It is shown that the soliton-cnoidal wave interaction solution, which represents soliton lying on a cnoidal periodic wave background, can be obtained analytically. Interesting characteristics of the interaction solution between soliton and cnoidal periodic wave are displayed graphically.
We derive generalised multi-flow hydrodynamic reductions of the nonlocal kinetic equation for a soliton gas and investigate their structure. These reductions not only provide further insight into the properties of the new kinetic equation but also co uld prove to be representatives of a novel class of integrable systems of hydrodynamic type, beyond the conventional semi-Hamiltonian framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا