ترغب بنشر مسار تعليمي؟ اضغط هنا

A review of elliptic difference Painleve equations

138   0   0.0 ( 0 )
 نشر من قبل Nobutaka Nakazono
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Discrete Painleve equations are nonlinear, nonautonomous difference equations of second-order. They have coefficients that are explicit functions of the independent variable $n$ and there are three different types of equations according to whether the coefficient functions are linear, exponential or elliptic functions of $n$. In this paper, we focus on the elliptic type and give a review of the construction of such equations on the $E_8$ lattice. The first such construction was given by Sakai cite{SakaiH2001:MR1882403}. We focus on recent developments giving rise to more examples of elliptic discrete Painleve equations.

قيم البحث

اقرأ أيضاً

In this paper a comprehensive review is given on the current status of achievements in the geometric aspects of the Painleve equations, with a particular emphasis on the discrete Painleve equations. The theory is controlled by the geometry of certain rational surfaces called the spaces of initial values, which are characterized by eight point configuration on $mathbb{P}^1timesmathbb{P}^1$ and classified according to the degeration of points. We give a systematic description of the equations and their various properties, such as affine Weyl group symmetries, hypergeomtric solutions and Lax pairs under this framework, by using the language of Picard lattice and root systems. We also provide with a collection of basic data; equations, point configurations/root data, Weyl group representations, Lax pairs, and hypergeometric solutions of all possible cases.
235 - Andrei K. Svinin 2014
We show some classes of higher order partial difference equations admitting a zero-curvature representation and generalizing lattice potential KdV equation. We construct integrable hierarchies which, as we suppose, yield generalized symmetries for ob tained class of partial difference equations. As a byproduct we also derive non-evolutionary differential-difference equations with their Lax pair representation which may be of potential interest.
In this paper we study a certain recurrence relation, that can be used to generate ladder operators for the Laguerre Unitary ensemble, from the point of view of Sakais geometric theory of Painleve equations. On one hand, this gives us one more detail ed example of the appearance of discrete Painleve equations in the theory of orthogonal polynomials. On the other hand, it serves as a good illustration of the effectiveness of a recently proposed procedure on how to reduce such recurrences to some canonical discrete Painleve equations.
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el liptic $N$-soliton solutions for higher order KdV equations is the same as that of the original KdV equation. Pointing out that the difference is only the time dependence, we find $N$-soliton solutions of higher order KdV equations can be constructed from those of the original KdV equation by properly replacing the time-dependence. We discuss that there always exist elliptic solutions for all higher order KdV equations.
301 - K.Kajiwara , T.Masuda , M.Noumi 2004
A theoretical foundation for a generalization of the elliptic difference Painleve equation to higher dimensions is provided in the framework of birational Weyl group action on the space of point configurations in general position in a projective spac e. By introducing an elliptic parametrization of point configurations, a realization of the Weyl group is proposed as a group of Cremona transformations containing elliptic functions in the coefficients. For this elliptic Cremona system, a theory of $tau$-functions is developed to translate it into a system of bilinear equations of Hirota-Miwa type for the $tau$-functions on the lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا