ﻻ يوجد ملخص باللغة العربية
We present the Onsager--Stefan--Maxwell thermodiffusion equations, which account for the Soret and Dufour effects in multicomponent fluids by treating heat as a pseudo-component. Unlike transport laws derived from kinetic theory, this framework preserves the structure of the isothermal Stefan--Maxwell equations, separating the thermodynamic forces that drive diffusion from the force that drives heat flow. The Onsager--Stefan--Maxwell transport-coefficient matrix is symmetric, and the second law of thermodynamics imbues it with simple spectral characteristics. This new approach proves equivalent to both the intuitive extension of Ficks law and the generalized Stefan--Maxwell equations popularized by Bird, Stewart, and Lightfoot. A general inversion process allows the unique formulation of flux-explicit transport equations relative to any choice of convective reference velocity. Stefan--Maxwell diffusivities and thermal diffusion factors are tabulated for gaseous mixtures containing helium, argon, neon, krypton, and xenon. The framework is deployed to perform numerical simulations of steady three-dimensional thermodiffusion in a ternary gas.
The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.
A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a vi
We present a theory for the three-dimensional evolution of tubes with expandable walls conveying fluid. Our theory can accommodate arbitrary deformations of the tube, arbitrary elasticity of the walls, and both compressible and incompressible flows i
We are modelling multi-scale, multi-physics uncertainty in wave-current interaction (WCI). To model uncertainty in WCI, we introduce stochasticity into the wave dynamics of two classic models of WCI; namely, the Generalised Lagrangian Mean (GLM) mode
The study reports the aspects of postimpact hydrodynamics of ferrofluid droplets on superhydrophobic SH surfaces in the presence of a horizontal magnetic field. A wide gamut of dynamics was observed by varying the impact Weber number We, the Hartmann