ﻻ يوجد ملخص باللغة العربية
A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a viscous fluid as a whole, and takes into account multiple physical effects, including gravity, viscosity, and surface tension. Dimensionle
The Navier-Stokes-Fourier model for a 3D thermoconducting viscous fluid, where the evolution equation for the temperature T contains a term proportional to the rate of energy dissipation, is investigated analitically at the light of the rotational in
Truncated Taylor expansions of smooth flow maps are used in Hamiltons principle to derive a multiscale Lagrangian particle representation of ideal fluid dynamics. Numerical simulations for scattering of solutions at one level of truncation are found
Hydrodynamic interactions between two identical elastic dumbbells settling under gravity in a viscous fluid at low-Reynolds-number are investigated within the point-particle model. Evolution of a benchmark initial configuration is studied, in which t
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This viscous Dysthe system models the evolution of a weakl
The rotational dynamics of magnetic nano particles in rotating magnetic fields in the presence of thermal noise is studied both theoretically and by performing numerical calculations. Kinetic equations for the dynamics of particles with uniaxial magn