ﻻ يوجد ملخص باللغة العربية
We present a theory for the three-dimensional evolution of tubes with expandable walls conveying fluid. Our theory can accommodate arbitrary deformations of the tube, arbitrary elasticity of the walls, and both compressible and incompressible flows inside the tube. We also present the theory of propagation of shock waves in such tubes and derive the conservation laws and Rankine-Hugoniot conditions in arbitrary spatial configuration of the tubes, and compute several examples of particular solutions. The theory is derived from a variational treatment of Cosserat rod theory extended to incorporate expandable walls and moving flow inside the tube. The results presented here are useful for biological flows and industrial applications involving high speed motion of gas in flexible tubes.
Many engineering and physiological applications deal with situations when a fluid is moving in flexible tubes with elastic walls. In the real-life applications like blood flow, there is often an additional complexity of vorticity being present in the
We derive the equations of motion for the dynamics of a porous media filled with an incompressible fluid. We use a variational approach with a Lagrangian written as the sum of terms representing the kinetic and potential energy of the elastic matrix,
Many parts of biological organisms are comprised of deformable porous media. The biological media is both pliable enough to deform in response to an outside force and can deform by itself using the work of an embedded muscle. For example, the recent
We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share the topology of known periodic solutions but are localized in space. Solutions of different size are organized in a snakes-and-ladders structure stri
We describe a new method for computing coherent Lagrangian vortices in two-dimensional flows according to any of the following approaches: black-hole vortices [Haller & Beron-Vera, 2013], objective Eulerian Coherent Structures (OECSs) [Serra & Haller