ﻻ يوجد ملخص باللغة العربية
The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.
We present the Onsager--Stefan--Maxwell thermodiffusion equations, which account for the Soret and Dufour effects in multicomponent fluids by treating heat as a pseudo-component. Unlike transport laws derived from kinetic theory, this framework prese
Several methods for handling sloping fluid-solid interfaces with the elastic parabolic equation are tested. A single-scattering approach that is modified for the fluid-solid case is accurate for some problems but breaks down when the contrast across
We establish a precise relation between mixed boundary conditions for scalar fields in asymptotically anti de Sitter spacetimes and the equation of state of the dual fluid. We provide a detailed derivation of the relation in the case of five bulk-dim
Multi-scale, multi-fidelity numerical simulations form the pillar of scientific applications related to numerically modeling fluids. However, simulating the fluid behavior characterized by the non-linear Navier Stokes equations are often times comput
New developments in the theory and numerical simulation of a recently proposed one-dimensional nonlinear time-dependent fluid model [K. Avinash, A. Bhattacharjee, and S. Hu, Phys. Rev. Lett. 90, 075001 (2003)] for void formation in dusty plasmas are