ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey of Sound Source Localization with Deep Learning Methods

391   0   0.0 ( 0 )
 نشر من قبل Pierre-Amaury Grumiaux
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This article is a survey on deep learning methods for single and multiple sound source localization. We are particularly interested in sound source localization in indoor/domestic environment, where reverberation and diffuse noise are present. We provide an exhaustive topography of the neural-based localization literature in this context, organized according to several aspects: the neural network architecture, the type of input features, the output strategy (classification or regression), the types of data used for model training and evaluation, and the model training strategy. This way, an interested reader can easily comprehend the vast panorama of the deep learning-based sound source localization methods. Tables summarizing the literature survey are provided at the end of the paper for a quick search of methods with a given set of target characteristics.



قيم البحث

اقرأ أيضاً

From a machine learning perspective, the human ability localize sounds can be modeled as a non-parametric and non-linear regression problem between binaural spectral features of sound received at the ears (input) and their sound-source directions (ou tput). The input features can be summarized in terms of the individuals head-related transfer functions (HRTFs) which measure the spectral response between the listeners eardrum and an external point in $3$D. Based on these viewpoints, two related problems are considered: how can one achieve an optimal sampling of measurements for training sound-source localization (SSL) models, and how can SSL models be used to infer the subjects HRTFs in listening tests. First, we develop a class of binaural SSL models based on Gaussian process regression and solve a emph{forward selection} problem that finds a subset of input-output samples that best generalize to all SSL directions. Second, we use an emph{active-learning} approach that updates an online SSL model for inferring the subjects SSL errors via headphones and a graphical user interface. Experiments show that only a small fraction of HRTFs are required for $5^{circ}$ localization accuracy and that the learned HRTFs are localized closer to their intended directions than non-individualized HRTFs.
Sound event localization aims at estimating the positions of sound sources in the environment with respect to an acoustic receiver (e.g. a microphone array). Recent advances in this domain most prominently focused on utilizing deep recurrent neural n etworks. Inspired by the success of transformer architectures as a suitable alternative to classical recurrent neural networks, this paper introduces a novel transformer-based sound event localization framework, where temporal dependencies in the received multi-channel audio signals are captured via self-attention mechanisms. Additionally, the estimated sound event positions are represented as multivariate Gaussian variables, yielding an additional notion of uncertainty, which many previously proposed deep learning-based systems designed for this application do not provide. The framework is evaluated on three publicly available multi-source sound event localization datasets and compared against state-of-the-art methods in terms of localization error and event detection accuracy. It outperforms all competing systems on all datasets with statistical significant differences in performance.
Self-supervised representation learning can mitigate the limitations in recognition tasks with few manually labeled data but abundant unlabeled data---a common scenario in sound event research. In this work, we explore unsupervised contrastive learni ng as a way to learn sound event representations. To this end, we propose to use the pretext task of contrasting differently augmented views of sound events. The views are computed primarily via mixing of training examples with unrelated backgrounds, followed by other data augmentations. We analyze the main components of our method via ablation experiments. We evaluate the learned representations using linear evaluation, and in two in-domain downstream sound event classification tasks, namely, using limited manually labeled data, and using noisy labeled data. Our results suggest that unsupervised contrastive pre-training can mitigate the impact of data scarcity and increase robustness against noisy labels, outperforming supervised baselines.
We present a new framework SoundDet, which is an end-to-end trainable and light-weight framework, for polyphonic moving sound event detection and localization. Prior methods typically approach this problem by preprocessing raw waveform into time-freq uency representations, which is more amenable to process with well-established image processing pipelines. Prior methods also detect in segment-wise manner, leading to incomplete and partial detections. SoundDet takes a novel approach and directly consumes the raw, multichannel waveform and treats the spatio-temporal sound event as a complete sound-object to be detected. Specifically, SoundDet consists of a backbone neural network and two parallel heads for temporal detection and spatial localization, respectively. Given the large sampling rate of raw waveform, the backbone network first learns a set of phase-sensitive and frequency-selective bank of filters to explicitly retain direction-of-arrival information, whilst being highly computationally and parametrically efficient than standard 1D/2D convolution. A dense sound event proposal map is then constructed to handle the challenges of predicting events with large varying temporal duration. Accompanying the dense proposal map are a temporal overlapness map and a motion smoothness map that measure a proposals confidence to be an event from temporal detection accuracy and movement consistency perspective. Involving the two maps guarantees SoundDet to be trained in a spatio-temporally unified manner. Experimental results on the public DCASE dataset show the advantage of SoundDet on both segment-based and our newly proposed event-based evaluation system.
Data augmentation is an inexpensive way to increase training data diversity and is commonly achieved via transformations of existing data. For tasks such as classification, there is a good case for learning representations of the data that are invari ant to such transformations, yet this is not explicitly enforced by classification losses such as the cross-entropy loss. This paper investigates the use of training objectives that explicitly impose this consistency constraint and how it can impact downstream audio classification tasks. In the context of deep convolutional neural networks in the supervised setting, we show empirically that certain measures of consistency are not implicitly captured by the cross-entropy loss and that incorporating such measures into the loss function can improve the performance of audio classification systems. Put another way, we demonstrate how existing augmentation methods can further improve learning by enforcing consistency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا