ترغب بنشر مسار تعليمي؟ اضغط هنا

PILOT: Introducing Transformers for Probabilistic Sound Event Localization

176   0   0.0 ( 0 )
 نشر من قبل Christopher Schymura
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sound event localization aims at estimating the positions of sound sources in the environment with respect to an acoustic receiver (e.g. a microphone array). Recent advances in this domain most prominently focused on utilizing deep recurrent neural networks. Inspired by the success of transformer architectures as a suitable alternative to classical recurrent neural networks, this paper introduces a novel transformer-based sound event localization framework, where temporal dependencies in the received multi-channel audio signals are captured via self-attention mechanisms. Additionally, the estimated sound event positions are represented as multivariate Gaussian variables, yielding an additional notion of uncertainty, which many previously proposed deep learning-based systems designed for this application do not provide. The framework is evaluated on three publicly available multi-source sound event localization datasets and compared against state-of-the-art methods in terms of localization error and event detection accuracy. It outperforms all competing systems on all datasets with statistical significant differences in performance.

قيم البحث

اقرأ أيضاً

We present a new framework SoundDet, which is an end-to-end trainable and light-weight framework, for polyphonic moving sound event detection and localization. Prior methods typically approach this problem by preprocessing raw waveform into time-freq uency representations, which is more amenable to process with well-established image processing pipelines. Prior methods also detect in segment-wise manner, leading to incomplete and partial detections. SoundDet takes a novel approach and directly consumes the raw, multichannel waveform and treats the spatio-temporal sound event as a complete sound-object to be detected. Specifically, SoundDet consists of a backbone neural network and two parallel heads for temporal detection and spatial localization, respectively. Given the large sampling rate of raw waveform, the backbone network first learns a set of phase-sensitive and frequency-selective bank of filters to explicitly retain direction-of-arrival information, whilst being highly computationally and parametrically efficient than standard 1D/2D convolution. A dense sound event proposal map is then constructed to handle the challenges of predicting events with large varying temporal duration. Accompanying the dense proposal map are a temporal overlapness map and a motion smoothness map that measure a proposals confidence to be an event from temporal detection accuracy and movement consistency perspective. Involving the two maps guarantees SoundDet to be trained in a spatio-temporally unified manner. Experimental results on the public DCASE dataset show the advantage of SoundDet on both segment-based and our newly proposed event-based evaluation system.
The weakly supervised sound event detection problem is the task of predicting the presence of sound events and their corresponding starting and ending points in a weakly labeled dataset. A weak dataset associates each training sample (a short recordi ng) to one or more present sources. Networks that solely rely on convolutional and recurrent layers cannot directly relate multiple frames in a recording. Motivated by attention and graph neural networks, we introduce the concept of an affinity mixup to incorporate time-level similarities and make a connection between frames. This regularization technique mixes up features in different layers using an adaptive affinity matrix. Our proposed affinity mixup network improves over state-of-the-art techniques event-F1 scores by $8.2%$.
Self-supervised representation learning can mitigate the limitations in recognition tasks with few manually labeled data but abundant unlabeled data---a common scenario in sound event research. In this work, we explore unsupervised contrastive learni ng as a way to learn sound event representations. To this end, we propose to use the pretext task of contrasting differently augmented views of sound events. The views are computed primarily via mixing of training examples with unrelated backgrounds, followed by other data augmentations. We analyze the main components of our method via ablation experiments. We evaluate the learned representations using linear evaluation, and in two in-domain downstream sound event classification tasks, namely, using limited manually labeled data, and using noisy labeled data. Our results suggest that unsupervised contrastive pre-training can mitigate the impact of data scarcity and increase robustness against noisy labels, outperforming supervised baselines.
Access to large corpora with strongly labelled sound events is expensive and difficult in engineering applications. Much research turns to address the problem of how to detect both the types and the timestamps of sound events with weak labels that on ly specify the types. This task can be treated as a multiple instance learning (MIL) problem, and the key to it is the design of a pooling function. In this paper, we propose an adaptive power pooling function which can automatically adapt to various sound sources. On two public datasets, the proposed power pooling function outperforms the state-of-the-art linear softmax pooling on both coarsegrained and fine-grained metrics. Notably, it improves the event-based F1 score (which evaluates the detection of event onsets and offsets) by 11.4% and 10.2% relative on the two datasets. While this paper focuses on sound event detection applications, the proposed method can be applied to MIL tasks in other domains.
Sound event detection is an important facet of audio tagging that aims to identify sounds of interest and define both the sound category and time boundaries for each sound event in a continuous recording. With advances in deep neural networks, there has been tremendous improvement in the performance of sound event detection systems, although at the expense of costly data collection and labeling efforts. In fact, current state-of-the-art methods employ supervised training methods that leverage large amounts of data samples and corresponding labels in order to facilitate identification of sound category and time stamps of events. As an alternative, the current study proposes a semi-supervised method for generating pseudo-labels from unsupervised data using a student-teacher scheme that balances self-training and cross-training. Additionally, this paper explores post-processing which extracts sound intervals from network prediction, for further improvement in sound event detection performance. The proposed approach is evaluated on sound event detection task for the DCASE2020 challenge. The results of these methods on both validation and public evaluation sets of DESED database show significant improvement compared to the state-of-the art systems in semi-supervised learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا