ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of the feedback particle filter with diffusion map based approximation of the gain

117   0   0.0 ( 0 )
 نشر من قبل Sahani Pathiraja Dr.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Control-type particle filters have been receiving increasing attention over the last decade as a means of obtaining sample based approximations to the sequential Bayesian filtering problem in the nonlinear setting. Here we analyse one such type, namely the feedback particle filter and a recently proposed approximation of the associated gain function based on diffusion maps. The key purpose is to provide analytic insights on the form of the approximate gain, which are of interest in their own right. These are then used to establish a roadmap to obtaining well-posedness and convergence of the finite $N$ system to its mean field limit. A number of possible future research directions are also discussed.


قيم البحث

اقرأ أيضاً

This paper is concerned with the convergence and long-term stability analysis of the feedback particle filter (FPF) algorithm. The FPF is an interacting system of $N$ particles where the interaction is designed such that the empirical distribution of the particles approximates the posterior distribution. It is known that in the mean-field limit ($N=infty$), the distribution of the particles is equal to the posterior distribution. However little is known about the convergence to the mean-field limit. In this paper, we consider the FPF algorithm for the linear Gaussian setting. In this setting, the algorithm is similar to the ensemble Kalman-Bucy filter algorithm. Although these algorithms have been numerically evaluated and widely used in applications, their convergence and long-term stability analysis remains an active area of research. In this paper, we show that, (i) the mean-field limit is well-defined with a unique strong solution; (ii) the mean-field process is stable with respect to the initial condition; (iii) we provide conditions such that the finite-$N$ system is long term stable and we obtain some mean-squared error estimates that are uniform in time.
Particle-based stochastic reaction-diffusion (PBSRD) models are a popular approach for studying biological systems involving both noise in the reaction process and diffusive transport. In this work we derive coarse-grained deterministic partial integ ro-differential equation (PIDE) models that provide a mean field approximation to the volume reactivity PBSRD model, a model commonly used for studying cellular processes. We formulate a weak measure-valued stochastic process (MVSP) representation for the volume reactivity PBSRD model, demonstrating for a simplified but representative system that it is consistent with the commonly used Doi Fock Space representation of the corresponding forward equation. We then prove the convergence of the general volume reactivity model MVSP to the mean field PIDEs in the large-population (i.e. thermodynamic) limit.
284 - Marina Kleptsyna 2013
The paper deals with homogenization of divergence form second order parabolic operators whose coefficients are periodic in spatial variables and random stationary in time. Under proper mixing assumptions, we study the limit behaviour of the normalize d difference between solutions of the original and the homogenized problems. The asymptotic behaviour of this difference depends crucially on the ratio between spatial and temporal scaling factors. Here we study the case of self-similar parabolic diffusion scaling.
208 - Marina Kleptsyna 2016
We consider Cauchy problem for a divergence form second order parabolic operator with rapidly oscillating coefficients that are periodic in spatial variables and random stationary ergodic in time. As was proved in [24] and [12] in this case the homog enized operator is deterministic. The paper focuses on non-diffusive scaling, when the oscillation in spatial variables is faster than that in temporal variable. Our goal is to study the asymptotic behaviour of the normalized difference between solutions of the original and the homogenized problems.
We provide a representation result of parabolic semi-linear PD-Es, with polynomial nonlinearity, by branching diffusion processes. We extend the classical representation for KPP equations, introduced by Skorokhod (1964), Watanabe (1965) and McKean (1 975), by allowing for polynomial nonlinearity in the pair $(u, Du)$, where $u$ is the solution of the PDE with space gradient $Du$. Similar to the previous literature, our result requires a non-explosion condition which restrict to small maturity or small nonlinearity of the PDE. Our main ingredient is the automatic differentiation technique as in Henry Labordere, Tan and Touzi (2015), based on the Malliavin integration by parts, which allows to account for the nonlinearities in the gradient. As a consequence, the particles of our branching diffusion are marked by the nature of the nonlinearity. This new representation has very important numerical implications as it is suitable for Monte Carlo simulation. Indeed, this provides the first numerical method for high dimensional nonlinear PDEs with error estimate induced by the dimension-free Central limit theorem. The complexity is also easily seen to be of the order of the squared dimension. The final section of this paper illustrates the efficiency of the algorithm by some high dimensional numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا