ﻻ يوجد ملخص باللغة العربية
We consider Cauchy problem for a divergence form second order parabolic operator with rapidly oscillating coefficients that are periodic in spatial variables and random stationary ergodic in time. As was proved in [24] and [12] in this case the homogenized operator is deterministic. The paper focuses on non-diffusive scaling, when the oscillation in spatial variables is faster than that in temporal variable. Our goal is to study the asymptotic behaviour of the normalized difference between solutions of the original and the homogenized problems.
The paper deals with homogenization of divergence form second order parabolic operators whose coefficients are periodic in spatial variables and random stationary in time. Under proper mixing assumptions, we study the limit behaviour of the normalize
We consider Cauchy problem for a divergence form second order parabolic operator with rapidly oscillating coefficients that are periodic in spatial variable and random stationary ergodic in time. As was proved in [25] and [13] in this case the homoge
This work aims to prove the small time large deviation principle (LDP) for a class of stochastic partial differential equations (SPDEs) with locally monotone coefficients in generalized variational framework. The main result could be applied to demon
Forward-backward stochastic differential equations (FBSDEs) have attracted significant attention since they were introduced almost 30 years ago, due to their wide range of applications, from solving non-linear PDEs to pricing American-type options. H
We present several results on solvability in Sobolev spaces $W^{1}_{p}$ of SPDEs in divergence form in the whole space.