ﻻ يوجد ملخص باللغة العربية
Particle-based stochastic reaction-diffusion (PBSRD) models are a popular approach for studying biological systems involving both noise in the reaction process and diffusive transport. In this work we derive coarse-grained deterministic partial integro-differential equation (PIDE) models that provide a mean field approximation to the volume reactivity PBSRD model, a model commonly used for studying cellular processes. We formulate a weak measure-valued stochastic process (MVSP) representation for the volume reactivity PBSRD model, demonstrating for a simplified but representative system that it is consistent with the commonly used Doi Fock Space representation of the corresponding forward equation. We then prove the convergence of the general volume reactivity model MVSP to the mean field PIDEs in the large-population (i.e. thermodynamic) limit.
We consider (a variant of) the external multi-particle diffusion-limited aggregation (MDLA) process of Rosenstock and Marquardt on the plane. Based on the recent findings of [11], [10] in one space dimension it is natural to conjecture that the scali
In this paper we consider three classes of interacting particle systems on $mathbb Z$: independent random walks, the exclusion process, and the inclusion process. We allow particles to switch their jump rate (the rate identifies the type of particle)
We formulate and compute a class of mean-field information dynamics based on reaction diffusion equations. Given a class of nonlinear reaction diffusion and entropy type Lyapunov functionals, we study their gradient flow formulations. We write the me
We propose a way to break symmetry in stochastic dynamics by introducing a dissipation term. We show in a specific mean-field model, that if the reversible model undergoes a phase transition of ferromagnetic type, then its dissipative counterpart exhibits periodic orbits in the thermodynamic limit.
We study a family of McKean-Vlasov (mean-field) type ergodic optimal control problems with linear control, and quadratic dependence on control of the cost function. For this class of problems we establish existence and uniqueness of an optimal contro