ترغب بنشر مسار تعليمي؟ اضغط هنا

$T_{cc}^+$ decays: differential spectra and two-body final states

65   0   0.0 ( 0 )
 نشر من قبل Reed Hodges
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Sean Fleming




اسأل ChatGPT حول البحث

The recently discovered tetraquark, $T_{cc}^+$, has quark content $ccbar{u}bar{d}$ and a mass that lies just below open charm thresholds. Hence it is reasonable to expect the state to have a significant molecular component. We calculate the decay of the $T_{cc}^+$ in a molecular interpretation using effective field theory. In addition we calculate differential spectra as a function of the invariant mass of the final state charm meson pair. These are in good agreement with spectra measured by LHCb. We also point out that if shallow bound states of two pseudoscalar charm mesons exist, then two-body decays to those bound states and a single pion or photon can significantly enhance the width of the $T_{cc}^+$.



قيم البحث

اقرأ أيضاً

We calculate the semileptonic and a subclass of sixteen nonleptonic two-body decays of the double charm baryon ground states $Xi_{cc}^{++},,Xi_{cc}^{+}$ and $Omega_{cc}^+$ where we concentrate on the nonleptonic decay modes. We identify those nonlept onic decay channels in which the decay proceeds solely via the factorizing contribution precluding a contamination from $W$-exchange. We use the covariant confined quark model previously developed by us to calculate the various helicity amplitudes which describe the dynamics of the $1/2^+ to 1/2^+$ and $1/2^+ to 3/2^+$ transitions induced by the Cabibbo favored effective $(c to s)$ and $(d to u)$ currents. We then proceed to calculate the rates of the decays as well as polarization effects and angular decay distributions of the prominent decay chains resulting from the nonleptonic decays of the double heavy charm baryon parent states.
The mass and coupling of the doubly charmed $J^P=0^{-}$ diquark-antidiquark states $T_{cc;bar{s} bar{s}}^{++}$ and $T_{cc;bar{d} bar{s}}^{++}$ that bear two units of the electric charge are calculated by means of QCD two-point sum rule method. Comput ations are carried out by taking into account vacuum condensates up to and including terms of tenth dimension. The dominant $S$-wave decays of these tetraquarks to a pair of conventional $ D_{s}^{+}D_{s0}^{ast +}(2317)$ and $D^{+}D_{s0}^{ast +}(2317)$ mesons are explored using QCD three-point sum rule approach, and their widths are found. The obtained results $m_{T}=(4390~pm 150)~mathrm{MeV}$ and $Gamma =(302 pm 113~mathrm{MeV}$) for the mass and width of the state $T_{cc;bar{ s} bar{s}}^{++}$, as well as spectroscopic parameters $widetilde{m} _{T}=(4265pm 140)~mathrm{MeV}$ and $widetilde{Gamma }=(171~pm 52)~ mathrm{MeV}$ of the tetraquark $T_{cc;bar{d} bar{s}}^{++}$ may be useful in experimental studies of exotic resonances.
Very recently, the LHCb Collaboration reported the doubly charmed tetraquark state $T_{cc}^+$ below the $D^{*+}D^0$ threshold about $273$ keV. As a very near-threshold state, its long-distance structure is very important. In the molecular scheme, we relate the coupling constants of $T_{cc}^+$ with $D^{*0}D^+$ and $D^{*+}D^0$ to its binding energy and mixing angle of two components with a coupled-channel effective field theory. With the coupling constants, we investigate the kinetically allowed strong decays $T_{cc}^+to D^0D^0pi^+$, $T_{cc}^+to D^+D^0pi^0$ and radiative decays $D^+D^0 gamma$. Our results show that the decay width of $T_{cc}^+to D^0D^0pi^+$ is the largest one, which is just the experimental observation channel. Our theoretical total strong and radiative widths are in favor of the $T_{cc}^+$ as a $|D^{*+}D^0rangle$ dominated bound state. The total strong and radiative width in the single channel limit and isospin singlet limit are given as $59.7^{+4.6}_{-4.4} text{ keV}$ and $46.7^{+2.7}_{-2.9} text{ keV}$, respectively. Our calculation is cutoff-independent and without prior isospin assignment. The absolute partial widths and ratios of the different decay channels can be used to test the structure of $T_{cc}^+$ state when the updated experimental results are available.
The LHCb collaboration has presented first experimental evidence that spin-carrying matter and antimatter differ. The study looked at four-body decays of the $Lambda_b^0$ baryon. Differences in the behaviour of matter and antimatter are associated wi th the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as $C!P$ violation. We discuss purely baryonic decay processes, i.e. decay processes involving only spin-carrying particles. They are yet unexplored elementary processes. Their study opens a new chapter of flavour physics in the route towards a better understanding of $C!P$ violation. It may help us to understand the observed matter and antimatter asymmetry of the Universe.
104 - Rui Chen , Qi Huang , Xiang Liu 2021
The isospin breaking effect plays an essential role in generating hadronic molecular states with a very tiny binding energy. Very recently, the LHCb Collaboration observed a very narrow doubly charmed tetraquark $T_{cc}^+$ in the $D^0D^0pi$ mass spec trum, which lies just below the $D^0D^{*+}$ threshold around 273 keV. In this work, we study the $D^0D^{*+}/D^+D^{*0}$ interactions with the one-boson-exchange effective potentials and consider the isospin breaking effect carefully. We not only reproduce the mass of the newly observed $T_{cc}^+$ very well in the doubly charmed molecular tetraquark scenario, but also predict the other doubly charmed partner resonance $T_{cc}^{prime+}$ with $m=3876~text{MeV}$, and $Gamma= 412~text{keV}$. The prime decay modes of the $T_{cc}^{prime+}$ are $D^0D^+gamma$ and $D^+D^0pi^0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا