ﻻ يوجد ملخص باللغة العربية
The LHCb collaboration has presented first experimental evidence that spin-carrying matter and antimatter differ. The study looked at four-body decays of the $Lambda_b^0$ baryon. Differences in the behaviour of matter and antimatter are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as $C!P$ violation. We discuss purely baryonic decay processes, i.e. decay processes involving only spin-carrying particles. They are yet unexplored elementary processes. Their study opens a new chapter of flavour physics in the route towards a better understanding of $C!P$ violation. It may help us to understand the observed matter and antimatter asymmetry of the Universe.
We review the two and three-body baryonic $B$ decays with the dibaryon (${bf Bbar B}$) as the final states. Accordingly, we summarize the experimental data of the branching fractions, angular asymmetries, and $CP$ asymmetries. In the approach of pert
The radiative decays of $b$-baryons facilitate the direct measurement of photon helicity in $bto sgamma$ transitions thus serving as an important test of physics beyond the Standard Model. In this paper we analyze the complete angular distribution of
We study the radiative and semileptonic B decays involving a spin-$J$ resonant $K_J^{(*)}$ with parity $(-1)^J$ for $K_J^*$ and $(-1)^{J+1}$ for $K_J$ in the final state. Using the large energy effective theory (LEET) techniques, we formulate $B to K
Decays of beauty baryons to the $D^0 p h^-$ and $Lambda_c^+ h^-$ final states (where $h$ indicates a pion or a kaon) are studied using a data sample of $pp$ collisions, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb
Inspired by the potential prospects of LHCb, Belle-II, STCF, CEPC and FCC-ee experiments, we discussed the probabilities of experimental investigation on the purely leptonic decays of the ground charged vector mesons including ${rho}^{pm}$, $K^{{ast}