ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the long-range structure of the $T_{cc}^+$ with the strong and electromagnetic decays

75   0   0.0 ( 0 )
 نشر من قبل Lu Meng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Very recently, the LHCb Collaboration reported the doubly charmed tetraquark state $T_{cc}^+$ below the $D^{*+}D^0$ threshold about $273$ keV. As a very near-threshold state, its long-distance structure is very important. In the molecular scheme, we relate the coupling constants of $T_{cc}^+$ with $D^{*0}D^+$ and $D^{*+}D^0$ to its binding energy and mixing angle of two components with a coupled-channel effective field theory. With the coupling constants, we investigate the kinetically allowed strong decays $T_{cc}^+to D^0D^0pi^+$, $T_{cc}^+to D^+D^0pi^0$ and radiative decays $D^+D^0 gamma$. Our results show that the decay width of $T_{cc}^+to D^0D^0pi^+$ is the largest one, which is just the experimental observation channel. Our theoretical total strong and radiative widths are in favor of the $T_{cc}^+$ as a $|D^{*+}D^0rangle$ dominated bound state. The total strong and radiative width in the single channel limit and isospin singlet limit are given as $59.7^{+4.6}_{-4.4} text{ keV}$ and $46.7^{+2.7}_{-2.9} text{ keV}$, respectively. Our calculation is cutoff-independent and without prior isospin assignment. The absolute partial widths and ratios of the different decay channels can be used to test the structure of $T_{cc}^+$ state when the updated experimental results are available.

قيم البحث

اقرأ أيضاً

The mass and coupling of the doubly charmed $J^P=0^{-}$ diquark-antidiquark states $T_{cc;bar{s} bar{s}}^{++}$ and $T_{cc;bar{d} bar{s}}^{++}$ that bear two units of the electric charge are calculated by means of QCD two-point sum rule method. Comput ations are carried out by taking into account vacuum condensates up to and including terms of tenth dimension. The dominant $S$-wave decays of these tetraquarks to a pair of conventional $ D_{s}^{+}D_{s0}^{ast +}(2317)$ and $D^{+}D_{s0}^{ast +}(2317)$ mesons are explored using QCD three-point sum rule approach, and their widths are found. The obtained results $m_{T}=(4390~pm 150)~mathrm{MeV}$ and $Gamma =(302 pm 113~mathrm{MeV}$) for the mass and width of the state $T_{cc;bar{ s} bar{s}}^{++}$, as well as spectroscopic parameters $widetilde{m} _{T}=(4265pm 140)~mathrm{MeV}$ and $widetilde{Gamma }=(171~pm 52)~ mathrm{MeV}$ of the tetraquark $T_{cc;bar{d} bar{s}}^{++}$ may be useful in experimental studies of exotic resonances.
139 - Ning Li , Zhi-Feng Sun , Xiang Liu 2021
In 2012, we investigated the possible molecular states composed of two charmed mesons [Phys.Rev. D 88, 114008 (2013), arXiv:1211.5007 [hep-ph](2012)]. The $D^*D$ system with the quantum numbers of $I(J^P)=0(1^+)$ was found to be a good candidate of t he loosely bound molecular state. This state is very close to the $D^*D$ threshold with a binding energy around 0.47 MeV. This prediction was confirmed by the new LHCb observation of $T_{cc}^+$ [see Franz Muheims talk at the European Physical Society conference on high energy physics 2021].
64 - Sean Fleming 2021
The recently discovered tetraquark, $T_{cc}^+$, has quark content $ccbar{u}bar{d}$ and a mass that lies just below open charm thresholds. Hence it is reasonable to expect the state to have a significant molecular component. We calculate the decay of the $T_{cc}^+$ in a molecular interpretation using effective field theory. In addition we calculate differential spectra as a function of the invariant mass of the final state charm meson pair. These are in good agreement with spectra measured by LHCb. We also point out that if shallow bound states of two pseudoscalar charm mesons exist, then two-body decays to those bound states and a single pion or photon can significantly enhance the width of the $T_{cc}^+$.
104 - Rui Chen , Qi Huang , Xiang Liu 2021
The isospin breaking effect plays an essential role in generating hadronic molecular states with a very tiny binding energy. Very recently, the LHCb Collaboration observed a very narrow doubly charmed tetraquark $T_{cc}^+$ in the $D^0D^0pi$ mass spec trum, which lies just below the $D^0D^{*+}$ threshold around 273 keV. In this work, we study the $D^0D^{*+}/D^+D^{*0}$ interactions with the one-boson-exchange effective potentials and consider the isospin breaking effect carefully. We not only reproduce the mass of the newly observed $T_{cc}^+$ very well in the doubly charmed molecular tetraquark scenario, but also predict the other doubly charmed partner resonance $T_{cc}^{prime+}$ with $m=3876~text{MeV}$, and $Gamma= 412~text{keV}$. The prime decay modes of the $T_{cc}^{prime+}$ are $D^0D^+gamma$ and $D^+D^0pi^0$.
We have studied, using double ratio of QCD (spectral) sum rules, the ratio between the masses of $T_{cc}$ and X(3872) assuming that they are respectively described by the $D-{D}^*$ and $D-bar{D}^*$ molecular currents. We found (within our approximati on) that the masses of these two states are almost degenerate. Since the pion exchange interaction between these mesons is exactly the same, we conclude that if the observed X(3872) meson is a $Dbar{D}^*+c.c.$ molecule, then the $DD^*$ molecule should also exist with approximately the same mass. An extension of the analysis to the $b$-quark case leads to the same conclusion. We also study the SU(3) breakings for the $T^s_{QQ}/T_{QQ}$ mass ratios. Motivated by the recent Belle observation of two $Z_b$ states, we revise our determination of $X_b$ by combining results from exponential and FESR sum rules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا