ﻻ يوجد ملخص باللغة العربية
The mass and coupling of the doubly charmed $J^P=0^{-}$ diquark-antidiquark states $T_{cc;bar{s} bar{s}}^{++}$ and $T_{cc;bar{d} bar{s}}^{++}$ that bear two units of the electric charge are calculated by means of QCD two-point sum rule method. Computations are carried out by taking into account vacuum condensates up to and including terms of tenth dimension. The dominant $S$-wave decays of these tetraquarks to a pair of conventional $ D_{s}^{+}D_{s0}^{ast +}(2317)$ and $D^{+}D_{s0}^{ast +}(2317)$ mesons are explored using QCD three-point sum rule approach, and their widths are found. The obtained results $m_{T}=(4390~pm 150)~mathrm{MeV}$ and $Gamma =(302 pm 113~mathrm{MeV}$) for the mass and width of the state $T_{cc;bar{ s} bar{s}}^{++}$, as well as spectroscopic parameters $widetilde{m} _{T}=(4265pm 140)~mathrm{MeV}$ and $widetilde{Gamma }=(171~pm 52)~ mathrm{MeV}$ of the tetraquark $T_{cc;bar{d} bar{s}}^{++}$ may be useful in experimental studies of exotic resonances.
The spectroscopic parameters and decay channels of the scalar tetraquark $ T_{bb;overline{u}overline{s}}^{-}$ (in what follows $T_{b:overline{s} }^{-} $) are investigated. The mass and coupling of the $T_{b:s}^{-}$ are calculated using the two-point
The spectroscopic parameters and decay channels of the axial-vector tetraquark $T_{bb;overline{u}overline{s}}^{-}$ (in what follows, $T_{b: overline{s}}^{mathrm{AV}}$) are explored using the quantum chromodynamics (QCD) sum rule method. The mass and
The mass and coupling of the scalar tetraquark $T_{bb;overline{u}overline{d }}^{-}$ (hereafter $T_{b:overline{d}}^{-} $) are calculated in the context of the QCD two-point sum rule method. In computations we take into account effects of various quark
The isospin breaking effect plays an essential role in generating hadronic molecular states with a very tiny binding energy. Very recently, the LHCb Collaboration observed a very narrow doubly charmed tetraquark $T_{cc}^+$ in the $D^0D^0pi$ mass spec
The weak decays of the axial-vector tetraquark $T_{bb;bar{u} bar{d}}^{-}$ to the scalar state $Z_{bc;bar{u} bar{d}}^{0}$ are investigated using the QCD three-point sum rule approach. In order to explore the process $T_{bb; bar{u} bar{d}}^{-} to Z_{bc