ترغب بنشر مسار تعليمي؟ اضغط هنا

The lattice of clones of self-dual operations collapsed

356   0   0.0 ( 0 )
 نشر من قبل Albert Vucaj
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

There are continuum many clones on a three-element set even if they are considered up to emph{homomorphic equivalence}. The clones we use to prove this fact are clones consisting of emph{self-dual operations}, i.e., operations that preserve the relation ${(0,1),(1,2),(2,0)}$. However, there are only countably many such clones when considered up to equivalence with respect to emph{minor-preserving maps} instead of clone homomorphisms. We give a full description of the set of clones of self-dual operations, ordered by the existence of minor-preserving maps. Our result can also be phrased as a statement about structures on a three-element set, ordered by primitive positive constructability, because there is a minor-preserving map from the polymorphism clone of a finite structure $mathfrak A$ to the polymorphism clone of a finite structure $mathfrak B$ if and only if there is a primitive positive construction of $mathfrak B$ in $mathfrak A$.



قيم البحث

اقرأ أيضاً

111 - Norman R. Reilly 2020
The kernel relation $K$ on the lattice $mathcal{L}(mathcal{CR})$ of varieties of completely regular semigroups has been a central component in many investigations into the structure of $mathcal{L}(mathcal{CR})$. However, apart from the $K$-class of t he trivial variety, which is just the lattice of varieties of bands, the detailed structure of kernel classes has remained a mystery until recently. Kadourek [RK2] has shown that for two large classes of subvarieties of $mathcal{CR}$ their kernel classes are singletons. Elsewhere (see [RK1], [RK2], [RK3]) we have provided a detailed analysis of the kernel classes of varieties of abelian groups. Here we study more general kernel classes. We begin with a careful development of the concept of duality in the lattice of varieties of completely regular semigroups and then show that the kernel classes of many varieties, including many self-dual varieties, of completely regular semigroups contain multiple copies of the lattice of varieties of bands as sublattices.
The study of partial clones on $mathbf{2}:={0,1}$ was initiated by R. V. Freivald. In his fundamental paper published in 1966, Freivald showed, among other things, that the set of all monotone partial functions and the set of all self-dual partial fu nctions are both maximal partial clones on $mathbf{2}$. Several papers dealing with intersections of maximal partial clones on $mathbf{2}$ have appeared after Freivald work. It is known that there are infinitely many partial clones that contain the set of all monotone self-dual partial functions on $mathbf{2}$, and the problem of describing them all was posed by some authors. In this paper we show that the set of partial clones that contain all monotone self-dual partial functions is of continuum cardinality on $mathbf{2}$.
43 - Erkko Lehtonen 2007
For a class C of operations on a nonempty base set A, an operation f is called a C-subfunction of an operation g, if f = g(h_1, ..., h_n), where all the inner functions h_i are members of C. Two operations are C-equivalent if they are C-subfunctions of each other. The C-subfunction relation is a quasiorder if and only if the defining class C is a clone. The C-subfunction relations defined by clones that contain all unary operations on a finite base set are examined. For each such clone it is determined whether the corresponding partial order satisfies the descending chain condition and whether it contains infinite antichains.
Let A be a finite non-singleton set. For |A|=2 we show that the partial clone consisting of all selfdual monotone partial functions on A is not finitely generated, while it is the intersection of two finitely generated maximal partial clones on A. Mo reover for |A| >= 3 we show that there are pairs of finitely generated maximal partial clones whose intersection is a non-finitely generated partial clone on A.
In this paper, we construct self-dual codes from a construction that involves 2x2 block circulant matrices, group rings and a reverse circulant matrix. We provide conditions whereby this construction can yield self-dual codes. We construct self-dual codes of various lengths over F2, F2 + uF2 and F4 + uF4. Using extensions, neighbours and neighbours of neighbours, we construct 32 new self-dual codes of length 68.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا