ﻻ يوجد ملخص باللغة العربية
The study of partial clones on $mathbf{2}:={0,1}$ was initiated by R. V. Freivald. In his fundamental paper published in 1966, Freivald showed, among other things, that the set of all monotone partial functions and the set of all self-dual partial functions are both maximal partial clones on $mathbf{2}$. Several papers dealing with intersections of maximal partial clones on $mathbf{2}$ have appeared after Freivald work. It is known that there are infinitely many partial clones that contain the set of all monotone self-dual partial functions on $mathbf{2}$, and the problem of describing them all was posed by some authors. In this paper we show that the set of partial clones that contain all monotone self-dual partial functions is of continuum cardinality on $mathbf{2}$.
For a class C of operations on a nonempty base set A, an operation f is called a C-subfunction of an operation g, if f = g(h_1, ..., h_n), where all the inner functions h_i are members of C. Two operations are C-equivalent if they are C-subfunctions
We provide two sufficient and necessary conditions to characterize any $n$-bit partial Boolean function with exact quantum 1-query complexity. Using the first characterization, we present all $n$-bit partial Boolean functions that depend on $n$ bits
Let A be a finite non-singleton set. For |A|=2 we show that the partial clone consisting of all selfdual monotone partial functions on A is not finitely generated, while it is the intersection of two finitely generated maximal partial clones on A. Mo
In this paper we set up a bivariate representation of partial theta functions which not only unifies some famous identities for partial theta functions due to Andrews and Warnaar, et al. but also unveils a new characteristic of such identities. As fu
We define toric partial orders, corresponding to regions of graphic toric hyperplane arrangements, just as ordinary partial orders correspond to regions of graphic hyperplane arrangements. Combinatorially, toric posets correspond to finite posets und