ﻻ يوجد ملخص باللغة العربية
Let A be a finite non-singleton set. For |A|=2 we show that the partial clone consisting of all selfdual monotone partial functions on A is not finitely generated, while it is the intersection of two finitely generated maximal partial clones on A. Moreover for |A| >= 3 we show that there are pairs of finitely generated maximal partial clones whose intersection is a non-finitely generated partial clone on A.
Let R be a commutative ring. If P is a maximal ideal of R whose a power is finitely generated then we prove that P is finitely generated if R is either locally coherent or arithmetical or a polynomial ring over a ring of global dimension $le$ 2. And
$N$-derivation is the natural generalization of derivation and triple derivation. Let ${cal L}$ be a finitely generated Lie algebra graded by a finite dimensional Cartan subalgebra. In this paper, a sufficient condition for Lie $N$-derivation algebra
We show that every finitely generated conical refinement monoid can be represented as the monoid $mathcal V(R)$ of isomorphism classes of finitely generated projective modules over a von Neumann regular ring $R$. To this end, we use the representatio
A definition of quasi-flat left module is proposed and it is shown that any left module which is either quasi-projective or flat is quasi-flat. A characterization of local commutative rings for which each ideal is quasi-flat (resp. quasi-projective)
We show that the invariants of a free associative algebra of finite rank under a linear action of a finite-dimensional Hopf algebra generated by group-like and skew-primitive elements form a finitely generated algebra exactly when the action is scala