ﻻ يوجد ملخص باللغة العربية
Five 4-dimensional families of embedded (4, 5) pairs of explicit 7-stage Runge-Kutta methods with FSAL property (a_7j = b_j, 1 <= j <= 7, c_7 = 1) are derived. Previously known pairs satisfy simplifying assumption sum_j a_ij c_j = c_i^2 / 2, i >= 3, and constitute two of these families. Three families consist of non-FSAL pairs of 6-stage methods, as the 7th stage is not used.
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were proposed and analyzed in [8]. These specially designed methods use reduced precision or the implicit computations and full precision fo
In this work we consider a mixed precision approach to accelerate the implemetation of multi-stage methods. We show that Runge-Kutta methods can be designed so that certain costly intermediate computations can be performed as a lower-precision comput
This study computes the gradient of a function of numerical solutions of ordinary differential equations (ODEs) with respect to the initial condition. The adjoint method computes the gradient approximately by solving the corresponding adjoint system
We categorify the RK family of numerical integration methods (explicit and implicit). Namely we prove that if a pair of ODEs are related by an affine map then the corresponding discrete time dynamical systems are also related by the map. We show that
We construct a family of embedded pairs for optimal strong stability preserving explicit Runge-Kutta methods of order $2 leq p leq 4$ to be used to obtain numerical solution of spatially discretized hyperbolic PDEs. In this construction, the goals in