ﻻ يوجد ملخص باللغة العربية
We construct a family of embedded pairs for optimal strong stability preserving explicit Runge-Kutta methods of order $2 leq p leq 4$ to be used to obtain numerical solution of spatially discretized hyperbolic PDEs. In this construction, the goals include non-defective methods, large region of absolute stability, and optimal error measurement as defined in [5,19]. The new family of embedded pairs offer the ability for strong stability preserving (SSP) methods to adapt by varying the step-size based on the local error estimation while maintaining their inherent nonlinear stability properties. Through several numerical experiments, we assess the overall effectiveness in terms of precision versus work while also taking into consideration accuracy and stability.
Problems that feature significantly different time scales, where the stiff time-step restriction comes from a linear component, implicit-explicit (IMEX) methods alleviate this restriction if the concern is linear stability. However, where the SSP pro
Strong stability preserving (SSP) Runge-Kutta methods are desirable when evolving in time problems that have discontinuities or sharp gradients and require nonlinear non-inner-product stability properties to be satisfied. Unlike the case for L2 linea
High order spatial discretizations with monotonicity properties are often desirable for the solution of hyperbolic PDEs. These methods can advantageously be coupled with high order strong stability preserving time discretizations. The search for high
Strong stability preserving (SSP) Runge-Kutta methods are often desired when evolving in time problems that have two components that have very different time scales. Where the SSP property is needed, it has been shown that implicit and implicit-expli
When evolving in time the solution of a hyperbolic partial differential equation, it is often desirable to use high order strong stability preserving (SSP) time discretizations. These time discretizations preserve the monotonicity properties satisfie