ﻻ يوجد ملخص باللغة العربية
In this work we consider a mixed precision approach to accelerate the implemetation of multi-stage methods. We show that Runge-Kutta methods can be designed so that certain costly intermediate computations can be performed as a lower-precision computation without adversely impacting the accuracy of the overall solution. In particular, a properly designed Runge-Kutta method will damp out the errors committed in the initial stages. This is of particular interest when we consider implicit Runge-Kutta methods. In such cases, the implicit computation of the stage values can be considerably faster if the solution can be of lower precision (or, equivalently, have a lower tolerance). We provide a general theoretical additive framework for designing mixed precision Runge-Kutta methods, and use this framework to derive order conditions for such methods. Next, we show how using this approach allows us to leverage low precision computation of the implicit solver while retaining high precision in the overall method. We present the behavior of some mixed-precision implicit Runge-Kutta methods through numerical studies, and demonstrate how the numerical results match with the theoretical framework. This novel mixed-precision implicit Runge-Kutta framework opens the door to the design of many such methods.
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were proposed and analyzed in [8]. These specially designed methods use reduced precision or the implicit computations and full precision fo
This study computes the gradient of a function of numerical solutions of ordinary differential equations (ODEs) with respect to the initial condition. The adjoint method computes the gradient approximately by solving the corresponding adjoint system
It is well-known that a numerical method which is at the same time geometric structure-preserving and physical property-preserving cannot exist in general for Hamiltonian partial differential equations. In this paper, we present a novel class of para
We categorify the RK family of numerical integration methods (explicit and implicit). Namely we prove that if a pair of ODEs are related by an affine map then the corresponding discrete time dynamical systems are also related by the map. We show that
In this paper, a family of arbitrarily high-order structure-preserving exponential Runge-Kutta methods are developed for the nonlinear Schrodinger equation by combining the scalar auxiliary variable approach with the exponential Runge-Kutta method. B