ترغب بنشر مسار تعليمي؟ اضغط هنا

DeepIC: Coding for Interference Channels via Deep Learning

387   0   0.0 ( 0 )
 نشر من قبل Karl Chahine
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-user interference channel is a model for multi one-to-one communications, where two transmitters wish to communicate with their corresponding receivers via a shared wireless medium. Two most common and simple coding schemes are time division (TD) and treating interference as noise (TIN). Interestingly, it is shown that there exists an asymptotic scheme, called Han-Kobayashi scheme, that performs better than TD and TIN. However, Han-Kobayashi scheme has impractically high complexity and is designed for asymptotic settings, which leads to a gap between information theory and practice. In this paper, we focus on designing practical codes for interference channels. As it is challenging to analytically design practical codes with feasible complexity, we apply deep learning to learn codes for interference channels. We demonstrate that DeepIC, a convolutional neural network-based code with an iterative decoder, outperforms TD and TIN by a significant margin for two-user additive white Gaussian noise channels with moderate amount of interference.



قيم البحث

اقرأ أيضاً

A rateless transmission architecture is developed for communication over Gaussian intersymbol interference channels, based on the concept of super-Nyquist (SNQ) signaling. In such systems, the signaling rate is chosen significantly higher than the Ny quist rate of the system. We show that such signaling, when used in conjunction with good off-the-shelf base codes, simple linear redundancy, and minimum mean-square error decision feedback equalization, results in capacity-approaching, low-complexity rateless codes for the time-varying intersymbol-interference channel. Constructions for both single-input / single-output (SISO) and multi-input / multi-output (MIMO) ISI channels are developed.
Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC and Polar codes: each is a linear code and represents a mathematical breakthrough. The impact on humanity is huge: each of these codes has been used in global wireless communication standards (satellite, WiFi, cellular). Reliability of communication over the classical additive white Gaussian noise (AWGN) channel enables benchmarking and ranking of the different codes. In this paper, we construct KO codes, a computationaly efficient family of deep-learning driven (encoder, decoder) pairs that outperform the state-of-the-art reliability performance on the standardized AWGN channel. KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding, in the challenging short-to-medium block length regime on the AWGN channel. We show that the gains of KO codes are primarily due to the nonlinear mapping of information bits directly to transmit real symbols (bypassing modulation) and yet possess an efficient, high performance decoder. The key technical innovation that renders this possible is design of a novel family of neural architectures inspired by the computation tree of the {bf K}ronecker {bf O}peration (KO) central to Reed-Muller and Polar codes. These architectures pave way for the discovery of a much richer class of hitherto unexplored nonlinear algebraic structures. The code is available at href{https://github.com/deepcomm/KOcodes}{https://github.com/deepcomm/KOcodes}
One of the main focus in federated learning (FL) is the communication efficiency since a large number of participating edge devices send their updates to the edge server at each round of the model training. Existing works reconstruct each model updat e from edge devices and implicitly assume that the local model updates are independent over edge devices. In FL, however, the model update is an indirect multi-terminal source coding problem, also called as the CEO problem where each edge device cannot observe directly the gradient that is to be reconstructed at the decoder, but is rather provided only with a noisy version. The existing works do not leverage the redundancy in the information transmitted by different edges. This paper studies the rate region for the indirect multiterminal source coding problem in FL. The goal is to obtain the minimum achievable rate at a particular upper bound of gradient variance. We obtain the rate region for the quadratic vector Gaussian CEO problem under unbiased estimator and derive an explicit formula of the sum-rate-distortion function in the special case where gradient are identical over edge device and dimension. Finally, we analyse communication efficiency of convex Minibatched SGD and non-convex Minibatched SGD based on the sum-rate-distortion function, respectively.
A rateless code-i.e., a rate-compatible family of codes-has the property that codewords of the higher rate codes are prefixes of those of the lower rate ones. A perfect family of such codes is one in which each of the codes in the family is capacity- achieving. We show by construction that perfect rateless codes with low-complexity decoding algorithms exist for additive white Gaussian noise channels. Our construction involves the use of layered encoding and successive decoding, together with repetition using time-varying layer weights. As an illustration of our framework, we design a practical three-rate code family. We further construct rich sets of near-perfect rateless codes within our architecture that require either significantly fewer layers or lower complexity than their perfect counterparts. Variations of the basic construction are also developed, including one for time-varying channels in which there is no a priori stochastic model.
The paper studies a class of three user Gaussian interference channels. A new layered lattice coding scheme is introduced as a transmission strategy. The use of lattice codes allows for an alignment of the interference observed at each receiver. The layered lattice coding is shown to achieve more than one degree of freedom for a class of interference channels and also achieves rates which are better than the rates obtained using the Han-Kobayashi coding scheme.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا