ﻻ يوجد ملخص باللغة العربية
Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC and Polar codes: each is a linear code and represents a mathematical breakthrough. The impact on humanity is huge: each of these codes has been used in global wireless communication standards (satellite, WiFi, cellular). Reliability of communication over the classical additive white Gaussian noise (AWGN) channel enables benchmarking and ranking of the different codes. In this paper, we construct KO codes, a computationaly efficient family of deep-learning driven (encoder, decoder) pairs that outperform the state-of-the-art reliability performance on the standardized AWGN channel. KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding, in the challenging short-to-medium block length regime on the AWGN channel. We show that the gains of KO codes are primarily due to the nonlinear mapping of information bits directly to transmit real symbols (bypassing modulation) and yet possess an efficient, high performance decoder. The key technical innovation that renders this possible is design of a novel family of neural architectures inspired by the computation tree of the {bf K}ronecker {bf O}peration (KO) central to Reed-Muller and Polar codes. These architectures pave way for the discovery of a much richer class of hitherto unexplored nonlinear algebraic structures. The code is available at href{https://github.com/deepcomm/KOcodes}{https://github.com/deepcomm/KOcodes}
The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the larg
The training complexity of deep learning-based channel decoders scales exponentially with the codebook size and therefore with the number of information bits. Thus, neural network decoding (NND) is currently only feasible for very short block lengths
High quality data is essential in deep learning to train a robust model. While in other fields data is sparse and costly to collect, in error decoding it is free to query and label thus allowing potential data exploitation. Utilizing this fact and in
Designing channel codes under low-latency constraints is one of the most demanding requirements in 5G standards. However, a sharp characterization of the performance of traditional codes is available only in the large block-length limit. Guided by su
The two-user interference channel is a model for multi one-to-one communications, where two transmitters wish to communicate with their corresponding receivers via a shared wireless medium. Two most common and simple coding schemes are time division