ترغب بنشر مسار تعليمي؟ اضغط هنا

The Benefits of Implicit Regularization from SGD in Least Squares Problems

87   0   0.0 ( 0 )
 نشر من قبل Quanquan Gu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic gradient descent (SGD) exhibits strong algorithmic regularization effects in practice, which has been hypothesized to play an important role in the generalization of modern machine learning approaches. In this work, we seek to understand these issues in the simpler setting of linear regression (including both underparameterized and overparameterized regimes), where our goal is to make sharp instance-based comparisons of the implicit regularization afforded by (unregularized) average SGD with the explicit regularization of ridge regression. For a broad class of least squares problem instances (that are natural in high-dimensional settings), we show: (1) for every problem instance and for every ridge parameter, (unregularized) SGD, when provided with logarithmically more samples than that provided to the ridge algorithm, generalizes no worse than the ridge solution (provided SGD uses a tuned constant stepsize); (2) conversely, there exist instances (in this wide problem class) where optimally-tuned ridge regression requires quadratically more samples than SGD in order to have the same generalization performance. Taken together, our results show that, up to the logarithmic factors, the generalization performance of SGD is always no worse than that of ridge regression in a wide range of overparameterized problems, and, in fact, could be much better for some problem instances. More generally, our results show how algorithmic regularization has important consequences even in simpler (overparameterized) convex settings.

قيم البحث

اقرأ أيضاً

194 - Alnur Ali , Edgar Dobriban , 2020
We study the implicit regularization of mini-batch stochastic gradient descent, when applied to the fundamental problem of least squares regression. We leverage a continuous-time stochastic differential equation having the same moments as stochastic gradient descent, which we call stochastic gradient flow. We give a bound on the excess risk of stochastic gradient flow at time $t$, over ridge regression with tuning parameter $lambda = 1/t$. The bound may be computed from explicit constants (e.g., the mini-batch size, step size, number of iterations), revealing precisely how these quantities drive the excess risk. Numerical examples show the bound can be small, indicating a tight relationship between the two estimators. We give a similar result relating the coefficients of stochastic gradient flow and ridge. These results hold under no conditions on the data matrix $X$, and across the entire optimization path (not just at convergence).
Multi-epoch, small-batch, Stochastic Gradient Descent (SGD) has been the method of choice for learning with large over-parameterized models. A popular theory for explaining why SGD works well in practice is that the algorithm has an implicit regulari zation that biases its output towards a good solution. Perhaps the theoretically most well understood learning setting for SGD is that of Stochastic Convex Optimization (SCO), where it is well known that SGD learns at a rate of $O(1/sqrt{n})$, where $n$ is the number of samples. In this paper, we consider the problem of SCO and explore the role of implicit regularization, batch size and multiple epochs for SGD. Our main contributions are threefold: (a) We show that for any regularizer, there is an SCO problem for which Regularized Empirical Risk Minimzation fails to learn. This automatically rules out any implicit regularization based explanation for the success of SGD. (b) We provide a separation between SGD and learning via Gradient Descent on empirical loss (GD) in terms of sample complexity. We show that there is an SCO problem such that GD with any step size and number of iterations can only learn at a suboptimal rate: at least $widetilde{Omega}(1/n^{5/12})$. (c) We present a multi-epoch variant of SGD commonly used in practice. We prove that this algorithm is at least as good as single pass SGD in the worst case. However, for certain SCO problems, taking multiple passes over the dataset can significantly outperform single pass SGD. We extend our results to the general learning setting by showing a problem which is learnable for any data distribution, and for this problem, SGD is strictly better than RERM for any regularization function. We conclude by discussing the implications of our results for deep learning, and show a separation between SGD and ERM for two layer diagonal neural networks.
Batch Normalization (BN) is a commonly used technique to accelerate and stabilize training of deep neural networks. Despite its empirical success, a full theoretical understanding of BN is yet to be developed. In this work, we analyze BN through the lens of convex optimization. We introduce an analytic framework based on convex duality to obtain exact convex representations of weight-decay regularized ReLU networks with BN, which can be trained in polynomial-time. Our analyses also show that optimal layer weights can be obtained as simple closed-form formulas in the high-dimensional and/or overparameterized regimes. Furthermore, we find that Gradient Descent provides an algorithmic bias effect on the standard non-convex BN network, and we design an approach to explicitly encode this implicit regularization into the convex objective. Experiments with CIFAR image classification highlight the effectiveness of this explicit regularization for mimicking and substantially improving the performance of standard BN networks.
We study local SGD (also known as parallel SGD and federated averaging), a natural and frequently used stochastic distributed optimization method. Its theoretical foundations are currently lacking and we highlight how all existing error guarantees in the convex setting are dominated by a simple baseline, minibatch SGD. (1) For quadratic objectives we prove that local SGD strictly dominates minibatch SGD and that accelerated local SGD is minimax optimal for quadratics; (2) For general convex objectives we provide the first guarantee that at least sometimes improves over minibatch SGD; (3) We show that indeed local SGD does not dominate minibatch SGD by presenting a lower bound on the performance of local SGD that is worse than the minibatch SGD guarantee.
Temporal Difference learning or TD($lambda$) is a fundamental algorithm in the field of reinforcement learning. However, setting TDs $lambda$ parameter, which controls the timescale of TD updates, is generally left up to the practitioner. We formaliz e the $lambda$ selection problem as a bias-variance trade-off where the solution is the value of $lambda$ that leads to the smallest Mean Squared Value Error (MSVE). To solve this trade-off we suggest applying Leave-One-Trajectory-Out Cross-Validation (LOTO-CV) to search the space of $lambda$ values. Unfortunately, this approach is too computationally expensive for most practical applications. For Least Squares TD (LSTD) we show that LOTO-CV can be implemented efficiently to automatically tune $lambda$ and apply function optimization methods to efficiently search the space of $lambda$ values. The resulting algorithm, ALLSTD, is parameter free and our experiments demonstrate that ALLSTD is significantly computationally faster than the na{i}ve LOTO-CV implementation while achieving similar performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا