ترغب بنشر مسار تعليمي؟ اضغط هنا

Demystifying Batch Normalization in ReLU Networks: Equivalent Convex Optimization Models and Implicit Regularization

104   0   0.0 ( 0 )
 نشر من قبل Arda Sahiner
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Batch Normalization (BN) is a commonly used technique to accelerate and stabilize training of deep neural networks. Despite its empirical success, a full theoretical understanding of BN is yet to be developed. In this work, we analyze BN through the lens of convex optimization. We introduce an analytic framework based on convex duality to obtain exact convex representations of weight-decay regularized ReLU networks with BN, which can be trained in polynomial-time. Our analyses also show that optimal layer weights can be obtained as simple closed-form formulas in the high-dimensional and/or overparameterized regimes. Furthermore, we find that Gradient Descent provides an algorithmic bias effect on the standard non-convex BN network, and we design an approach to explicitly encode this implicit regularization into the convex objective. Experiments with CIFAR image classification highlight the effectiveness of this explicit regularization for mimicking and substantially improving the performance of standard BN networks.

قيم البحث

اقرأ أيضاً

Batch normalization (BN) is a technique to normalize activations in intermediate layers of deep neural networks. Its tendency to improve accuracy and speed up training have established BN as a favorite technique in deep learning. Yet, despite its eno rmous success, there remains little consensus on the exact reason and mechanism behind these improvements. In this paper we take a step towards a better understanding of BN, following an empirical approach. We conduct several experiments, and show that BN primarily enables training with larger learning rates, which is the cause for faster convergence and better generalization. For networks without BN we demonstrate how large gradient updates can result in diverging loss and activations growing uncontrollably with network depth, which limits possible learning rates. BN avoids this problem by constantly correcting activations to be zero-mean and of unit standard deviation, which enables larger gradient steps, yields faster convergence and may help bypass sharp local minima. We further show various ways in which gradients and activations of deep unnormalized networks are ill-behaved. We contrast our results against recent findings in random matrix theory, shedding new light on classical initialization schemes and their consequences.
Recent work has shown how to embed differentiable optimization problems (that is, problems whose solutions can be backpropagated through) as layers within deep learning architectures. This method provides a useful inductive bias for certain problems, but existing software for differentiable optimization layers is rigid and difficult to apply to new settings. In this paper, we propose an approach to differentiating through disciplined convex programs, a subclass of convex optimization problems used by domain-specific languages (DSLs) for convex optimization. We introduce disciplined parametrized programming, a subset of disciplined convex programming, and we show that every disciplined parametrized program can be represented as the composition of an affine map from parameters to problem data, a solver, and an affine map from the solvers solution to a solution of the original problem (a new form we refer to as affine-solver-affine form). We then demonstrate how to efficiently differentiate through each of these components, allowing for end-to-end analytical differentiation through the entire convex program. We implement our methodology in version 1.1 of CVXPY, a popular Python-embedded DSL for convex optimization, and additionally implement differentiable layers for disciplined convex programs in PyTorch and TensorFlow 2.0. Our implementation significantly lowers the barrier to using convex optimization problems in differentiable programs. We present applications in linear machine learning models and in stochastic control, and we show that our layer is competitive (in execution time) compared to specialized differentiable solvers from past work.
Stochastic gradient descent (SGD) exhibits strong algorithmic regularization effects in practice, which has been hypothesized to play an important role in the generalization of modern machine learning approaches. In this work, we seek to understand t hese issues in the simpler setting of linear regression (including both underparameterized and overparameterized regimes), where our goal is to make sharp instance-based comparisons of the implicit regularization afforded by (unregularized) average SGD with the explicit regularization of ridge regression. For a broad class of least squares problem instances (that are natural in high-dimensional settings), we show: (1) for every problem instance and for every ridge parameter, (unregularized) SGD, when provided with logarithmically more samples than that provided to the ridge algorithm, generalizes no worse than the ridge solution (provided SGD uses a tuned constant stepsize); (2) conversely, there exist instances (in this wide problem class) where optimally-tuned ridge regression requires quadratically more samples than SGD in order to have the same generalization performance. Taken together, our results show that, up to the logarithmic factors, the generalization performance of SGD is always no worse than that of ridge regression in a wide range of overparameterized problems, and, in fact, could be much better for some problem instances. More generally, our results show how algorithmic regularization has important consequences even in simpler (overparameterized) convex settings.
A well-known issue of Batch Normalization is its significantly reduced effectiveness in the case of small mini-batch sizes. When a mini-batch contains few examples, the statistics upon which the normalization is defined cannot be reliably estimated f rom it during a training iteration. To address this problem, we present Cross-Iteration Batch Normalization (CBN), in which examples from multiple recent iterations are jointly utilized to enhance estimation quality. A challenge of computing statistics over multiple iterations is that the network activations from different iterations are not comparable to each other due to changes in network weights. We thus compensate for the network weight changes via a proposed technique based on Taylor polynomials, so that the statistics can be accurately estimated and batch normalization can be effectively applied. On object detection and image classification with small mini-batch sizes, CBN is found to outperform the original batch normalization and a direct calculation of statistics over previous iterations without the proposed compensation technique. Code is available at https://github.com/Howal/Cross-iterationBatchNorm .
116 - Ziquan Liu , Yufei Cui , Jia Wan 2021
Deep neural networks with batch normalization (BN-DNNs) are invariant to weight rescaling due to their normalization operations. However, using weight decay (WD) benefits these weight-scale-invariant networks, which is often attributed to an increase of the effective learning rate when the weight norms are decreased. In this paper, we demonstrate the insufficiency of the previous explanation and investigate the implicit biases of stochastic gradient descent (SGD) on BN-DNNs to provide a theoretical explanation for the efficacy of weight decay. We identity two implicit biases of SGD on BN-DNNs: 1) the weight norms in SGD training remain constant in the continuous-time domain and keep increasing in the discrete-time domain; 2) SGD optimizes weight vectors in fully-connected networks or convolution kernels in convolution neural networks by updating components lying in the input feature span, while leaving those components orthogonal to the input feature span unchanged. Thus, SGD without WD accumulates weight noise orthogonal to the input feature span, and cannot eliminate such noise. Our empirical studies corroborate the hypothesis that weight decay suppresses weight noise that is left untouched by SGD. Furthermore, we propose to use weight rescaling (WRS) instead of weight decay to achieve the same regularization effect, while avoiding performance degradation of WD on some momentum-based optimizers. Our empirical results on image recognition show that regardless of optimization methods and network architectures, training BN-DNNs using WRS achieves similar or better performance compared with using WD. We also show that training with WRS generalizes better compared to WD, on other computer vision tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا