ترغب بنشر مسار تعليمي؟ اضغط هنا

The Implicit Regularization of Stochastic Gradient Flow for Least Squares

195   0   0.0 ( 0 )
 نشر من قبل Edgar Dobriban
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the implicit regularization of mini-batch stochastic gradient descent, when applied to the fundamental problem of least squares regression. We leverage a continuous-time stochastic differential equation having the same moments as stochastic gradient descent, which we call stochastic gradient flow. We give a bound on the excess risk of stochastic gradient flow at time $t$, over ridge regression with tuning parameter $lambda = 1/t$. The bound may be computed from explicit constants (e.g., the mini-batch size, step size, number of iterations), revealing precisely how these quantities drive the excess risk. Numerical examples show the bound can be small, indicating a tight relationship between the two estimators. We give a similar result relating the coefficients of stochastic gradient flow and ridge. These results hold under no conditions on the data matrix $X$, and across the entire optimization path (not just at convergence).

قيم البحث

اقرأ أيضاً

This work provides a simplified proof of the statistical minimax optimality of (iterate averaged) stochastic gradient descent (SGD), for the special case of least squares. This result is obtained by analyzing SGD as a stochastic process and by sharpl y characterizing the stationary covariance matrix of this process. The finite rate optimality characterization captures the constant factors and addresses model mis-specification.
Stochastic gradient descent (SGD) exhibits strong algorithmic regularization effects in practice, which has been hypothesized to play an important role in the generalization of modern machine learning approaches. In this work, we seek to understand t hese issues in the simpler setting of linear regression (including both underparameterized and overparameterized regimes), where our goal is to make sharp instance-based comparisons of the implicit regularization afforded by (unregularized) average SGD with the explicit regularization of ridge regression. For a broad class of least squares problem instances (that are natural in high-dimensional settings), we show: (1) for every problem instance and for every ridge parameter, (unregularized) SGD, when provided with logarithmically more samples than that provided to the ridge algorithm, generalizes no worse than the ridge solution (provided SGD uses a tuned constant stepsize); (2) conversely, there exist instances (in this wide problem class) where optimally-tuned ridge regression requires quadratically more samples than SGD in order to have the same generalization performance. Taken together, our results show that, up to the logarithmic factors, the generalization performance of SGD is always no worse than that of ridge regression in a wide range of overparameterized problems, and, in fact, could be much better for some problem instances. More generally, our results show how algorithmic regularization has important consequences even in simpler (overparameterized) convex settings.
243 - Tianyi Chen , Yuejiao Sun , 2021
Stochastic nested optimization, including stochastic compositional, min-max and bilevel optimization, is gaining popularity in many machine learning applications. While the three problems share the nested structure, existing works often treat them se parately, and thus develop problem-specific algorithms and their analyses. Among various exciting developments, simple SGD-type updates (potentially on multiple variables) are still prevalent in solving this class of nested problems, but they are believed to have slower convergence rate compared to that of the non-nested problems. This paper unifies several SGD-type updates for stochastic nested problems into a single SGD approach that we term ALternating Stochastic gradient dEscenT (ALSET) method. By leveraging the hidden smoothness of the problem, this paper presents a tighter analysis of ALSET for stochastic nested problems. Under the new analysis, to achieve an $epsilon$-stationary point of the nested problem, it requires ${cal O}(epsilon^{-2})$ samples. Under certain regularity conditions, applying our results to stochastic compositional, min-max and reinforcement learning problems either improves or matches the best-known sample complexity in the respective cases. Our results explain why simple SGD-type algorithms in stochastic nested problems all work very well in practice without the need for further modifications.
The superior performance of ensemble methods with infinite models are well known. Most of these methods are based on optimization problems in infinite-dimensional spaces with some regularization, for instance, boosting methods and convex neural netwo rks use $L^1$-regularization with the non-negative constraint. However, due to the difficulty of handling $L^1$-regularization, these problems require early stopping or a rough approximation to solve it inexactly. In this paper, we propose a new ensemble learning method that performs in a space of probability measures, that is, our method can handle the $L^1$-constraint and the non-negative constraint in a rigorous way. Such an optimization is realized by proposing a general purpose stochastic optimization method for learning probability measures via parameterization using transport maps on base models. As a result of running the method, a transport map to output an infinite ensemble is obtained, which forms a residual-type network. From the perspective of functional gradient methods, we give a convergence rate as fast as that of a stochastic optimization method for finite dimensional nonconvex problems. Moreover, we show an interior optimality property of a local optimality condition used in our analysis.
We consider whether algorithmic choices in over-parameterized linear matrix factorization introduce implicit regularization. We focus on noiseless matrix sensing over rank-$r$ positive semi-definite (PSD) matrices in $mathbb{R}^{n times n}$, with a s ensing mechanism that satisfies restricted isometry properties (RIP). The algorithm we study is emph{factored gradient descent}, where we model the low-rankness and PSD constraints with the factorization $UU^top$, for $U in mathbb{R}^{n times r}$. Surprisingly, recent work argues that the choice of $r leq n$ is not pivotal: even setting $U in mathbb{R}^{n times n}$ is sufficient for factored gradient descent to find the rank-$r$ solution, which suggests that operating over the factors leads to an implicit regularization. In this contribution, we provide a different perspective to the problem of implicit regularization. We show that under certain conditions, the PSD constraint by itself is sufficient to lead to a unique rank-$r$ matrix recovery, without implicit or explicit low-rank regularization. emph{I.e.}, under assumptions, the set of PSD matrices, that are consistent with the observed data, is a singleton, regardless of the algorithm used.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا