ﻻ يوجد ملخص باللغة العربية
However, their electrocatalytic activity is still poorly understood. This work deciphers the origin of the catalytic activity of counter-electrodes (CEs)/current collectors made of self-standing carbon nanotubes fibers (CNTfs) using Co$^(+2)$/Co$^(+3)$ redox couple electrolytes. This is based on comprehensive electrochemical and spectroscopic characterizations of fresh and used electrodes applied to symmetric electrochemical cells using platinum-based CEs as a reference. As the most relevant findings, two straight relationships were established: i) the limiting current and stability increase rapidly with surface concentration of oxygen-containing functional groups, and ii) the catalytic potential is inversily related to the amount of residual metallic Fe catalyst nanoparticles interspersed in the CNTf network. Finally, the fine tune of the metallic nanoparticle content and the degree of functionalization enabled fabrication of efficient and stable dye-sensitized solar cells with cobalt electrolytes and CNTf-CE outperforming those with reference Pt-CEs.
Fabrication techniques such as laser patterning offer excellent potential for low cost and large area device fabrication. Conductive polymers can be used to replace expensive metallic inks such as silver and gold nanoparticles for printing technology
We have characterized the conductivity of carbon nanotubes (CNT) fibers enriched in semiconducting species as a function of temperature and pulsed laser irradiation of 266 nm wavelength. While at high temperatures the response approaches an Arrhenius
Lightweight parabolic mirrors for solar concentrators have been fabricated using carbon fiber reinforced polymer (CFRP) and a nanometer scale optical surface smoothing technique. The smoothing technique improved the surface roughness of the CFRP surf
Current approaches for electric power generation from nanoscale conducting or semi-conducting layers in contact with moving aqueous droplets are promising as they show efficiencies of around 30 percent, yet, even the most successful ones pose challen
We propose a solar thermal energy conversion system consisting of a solar absorber, a thermoradiative cell or negative illumination photodiode, and a photovoltaic cell. Because it is a heat engine, this system can also be paired with thermal storage