ﻻ يوجد ملخص باللغة العربية
We propose a solar thermal energy conversion system consisting of a solar absorber, a thermoradiative cell or negative illumination photodiode, and a photovoltaic cell. Because it is a heat engine, this system can also be paired with thermal storage to provide reliable electricity generation. Heat from the solar absorber drives radiative recombination current in the thermoradiative cell, and its emitted light is absorbed by the photovoltaic cell to provide an additional photocurrent. Based on the principle of detailed balance, we calculate a limiting solar conversion efficiency of 85% for fully concentrated sunlight and 45% for one sun with an absorber and single-junction cells of equal areas. Ideal and nonideal solar thermoradiative-photovoltaic systems outperform solar thermophotovoltaic converters for low bandgaps and practical absorber temperatures. Their performance enhancement results from a high tolerance to nonradiative generation/recombination and an ability to minimize radiative heat losses. We show that a realistic device with all major losses could achieve increases in solar conversion efficiency by up to 7.9% (absolute) compared to a solar thermophotovoltaic device under low optical concentration. Our results indicate that these converters could serve as efficient heat engines for low cost single axis tracking systems.
Detection and direct power conversion of high energy and high intensity ionizing radiation could be a key element in next generation nuclear reactor safety systems and space-born devices. For example, the Fukushima catastrophe in 2011 could have been
Current approaches for electric power generation from nanoscale conducting or semi-conducting layers in contact with moving aqueous droplets are promising as they show efficiencies of around 30 percent, yet, even the most successful ones pose challen
However, their electrocatalytic activity is still poorly understood. This work deciphers the origin of the catalytic activity of counter-electrodes (CEs)/current collectors made of self-standing carbon nanotubes fibers (CNTfs) using Co$^(+2)$/Co$^(+3
Energy harvesting from sun and outer space using thermoradiative devices (TRD), despite being promising renewable energy sources, are limited only to daytime and nighttime period, respectively. A system with 24-hour continuous energy generation remai
A galvanic displacement reaction-based, room-temperature dip-and-dry technique is demonstrated for fabricating selectively solar-absorbing plasmonic nanostructure-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs spectral