ﻻ يوجد ملخص باللغة العربية
In applications such as natural language processing or computer vision, one is given a large $n times d$ matrix $A = (a_{i,j})$ and would like to compute a matrix decomposition, e.g., a low rank approximation, of a function $f(A) = (f(a_{i,j}))$ applied entrywise to $A$. A very important special case is the likelihood function $fleft( A right ) = log{left( left| a_{ij}right| +1right)}$. A natural way to do this would be to simply apply $f$ to each entry of $A$, and then compute the matrix decomposition, but this requires storing all of $A$ as well as multiple passes over its entries. Recent work of Liang et al. shows how to find a rank-$k$ factorization to $f(A)$ for an $n times n$ matrix $A$ using only $n cdot operatorname{poly}(epsilon^{-1}klog n)$ words of memory, with overall error $10|f(A)-[f(A)]_k|_F^2 + operatorname{poly}(epsilon/k) |f(A)|_{1,2}^2$, where $[f(A)]_k$ is the best rank-$k$ approximation to $f(A)$ and $|f(A)|_{1,2}^2$ is the square of the sum of Euclidean lengths of rows of $f(A)$. Their algorithm uses three passes over the entries of $A$. The authors pose the open question of obtaining an algorithm with $n cdot operatorname{poly}(epsilon^{-1}klog n)$ words of memory using only a single pass over the entries of $A$. In this paper we resolve this open question, obtaining the first single-pass algorithm for this problem and for the same class of functions $f$ studied by Liang et al. Moreover, our error is $|f(A)-[f(A)]_k|_F^2 + operatorname{poly}(epsilon/k) |f(A)|_F^2$, where $|f(A)|_F^2$ is the sum of squares of Euclidean lengths of rows of $f(A)$. Thus our error is significantly smaller, as it removes the factor of $10$ and also $|f(A)|_F^2 leq |f(A)|_{1,2}^2$. We also give an algorithm for regression, pointing out an error in previous work, and empirically validate our results.
A distance matrix $A in mathbb R^{n times m}$ represents all pairwise distances, $A_{ij}=mathrm{d}(x_i,y_j)$, between two point sets $x_1,...,x_n$ and $y_1,...,y_m$ in an arbitrary metric space $(mathcal Z, mathrm{d})$. Such matrices arise in various
We show how to approximate a data matrix $mathbf{A}$ with a much smaller sketch $mathbf{tilde A}$ that can be used to solve a general class of constrained k-rank approximation problems to within $(1+epsilon)$ error. Importantly, this class of problem
We provide a number of algorithmic results for the following family of problems: For a given binary mtimes n matrix A and integer k, decide whether there is a simple binary matrix B which differs from A in at most k entries. For an integer r, the sim
We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain t
A number of recent works have studied algorithms for entrywise $ell_p$-low rank approximation, namely, algorithms which given an $n times d$ matrix $A$ (with $n geq d$), output a rank-$k$ matrix $B$ minimizing $|A-B|_p^p=sum_{i,j}|A_{i,j}-B_{i,j}|^p$