ترغب بنشر مسار تعليمي؟ اضغط هنا

A PTAS for $ell_p$-Low Rank Approximation

105   0   0.0 ( 0 )
 نشر من قبل Frank Ban
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of recent works have studied algorithms for entrywise $ell_p$-low rank approximation, namely, algorithms which given an $n times d$ matrix $A$ (with $n geq d$), output a rank-$k$ matrix $B$ minimizing $|A-B|_p^p=sum_{i,j}|A_{i,j}-B_{i,j}|^p$ when $p > 0$; and $|A-B|_0=sum_{i,j}[A_{i,j} eq B_{i,j}]$ for $p=0$. On the algorithmic side, for $p in (0,2)$, we give the first $(1+epsilon)$-approximation algorithm running in time $n^{text{poly}(k/epsilon)}$. Further, for $p = 0$, we give the first almost-linear time approximation scheme for what we call the Generalized Binary $ell_0$-Rank-$k$ problem. Our algorithm computes $(1+epsilon)$-approximation in time $(1/epsilon)^{2^{O(k)}/epsilon^{2}} cdot nd^{1+o(1)}$. On the hardness of approximation side, for $p in (1,2)$, assuming the Small Set Expansion Hypothesis and the Exponential Time Hypothesis (ETH), we show that there exists $delta := delta(alpha) > 0$ such that the entrywise $ell_p$-Rank-$k$ problem has no $alpha$-approximation algorithm running in time $2^{k^{delta}}$.

قيم البحث

اقرأ أيضاً

We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain t he first linear time-approximation schemes for a number of well-studied fundamental problems concerning clustering of binary vectors and low-rank approximation of binary matrices. Among the problems solvable by our approach are textsc{Low GF(2)-Rank Approximation}, textsc{Low Boolean-Rank Approximation}, and vario
We propose practical algorithms for entrywise $ell_p$-norm low-rank approximation, for $p = 1$ or $p = infty$. The proposed framework, which is non-convex and gradient-based, is easy to implement and typically attains better approximations, faster, t han state of the art. From a theoretical standpoint, we show that the proposed scheme can attain $(1 + varepsilon)$-OPT approximations. Our algorithms are not hyperparameter-free: they achieve the desiderata only assuming algorithms hyperparameters are known a priori---or are at least approximable. I.e., our theory indicates what problem quantities need to be known, in order to get a good solution within polynomial time, and does not contradict to recent inapproximabilty results, as in [46].
We provide a number of algorithmic results for the following family of problems: For a given binary mtimes n matrix A and integer k, decide whether there is a simple binary matrix B which differs from A in at most k entries. For an integer r, the sim plicity of B is characterized as follows. - Binary r-Means: Matrix B has at most r different columns. This problem is known to be NP-complete already for r=2. We show that the problem is solvable in time 2^{O(klog k)}cdot(nm)^{O(1)} and thus is fixed-parameter tractable parameterized by k. We prove that the problem admits a polynomial kernel when parameterized by r and k but it has no polynomial kernel when parameterized by k only unless NPsubseteq coNP/poly. We also complement these result by showing that when being parameterized by r and k, the problem admits an algorithm of running time 2^{O(rcdot sqrt{klog{(k+r)}})}(nm)^{O(1)}, which is subexponential in k for rin O(k^{1/2 -epsilon}) for any epsilon>0. - Low GF(2)-Rank Approximation: Matrix B is of GF(2)-rank at most r. This problem is known to be NP-complete already for r=1. It also known to be W[1]-hard when parameterized by k. Interestingly, when parameterized by r and k, the problem is not only fixed-parameter tractable, but it is solvable in time 2^{O(r^{ 3/2}cdot sqrt{klog{k}})}(nm)^{O(1)}, which is subexponential in k. - Low Boolean-Rank Approximation: Matrix B is of Boolean rank at most r. The problem is known to be NP-complete for k=0 as well as for r=1. We show that it is solvable in subexponential in k time 2^{O(r2^rcdot sqrt{klog k})}(nm)^{O(1)}.
108 - Yifei Jiang , Yi Li , Yiming Sun 2021
In applications such as natural language processing or computer vision, one is given a large $n times d$ matrix $A = (a_{i,j})$ and would like to compute a matrix decomposition, e.g., a low rank approximation, of a function $f(A) = (f(a_{i,j}))$ appl ied entrywise to $A$. A very important special case is the likelihood function $fleft( A right ) = log{left( left| a_{ij}right| +1right)}$. A natural way to do this would be to simply apply $f$ to each entry of $A$, and then compute the matrix decomposition, but this requires storing all of $A$ as well as multiple passes over its entries. Recent work of Liang et al. shows how to find a rank-$k$ factorization to $f(A)$ for an $n times n$ matrix $A$ using only $n cdot operatorname{poly}(epsilon^{-1}klog n)$ words of memory, with overall error $10|f(A)-[f(A)]_k|_F^2 + operatorname{poly}(epsilon/k) |f(A)|_{1,2}^2$, where $[f(A)]_k$ is the best rank-$k$ approximation to $f(A)$ and $|f(A)|_{1,2}^2$ is the square of the sum of Euclidean lengths of rows of $f(A)$. Their algorithm uses three passes over the entries of $A$. The authors pose the open question of obtaining an algorithm with $n cdot operatorname{poly}(epsilon^{-1}klog n)$ words of memory using only a single pass over the entries of $A$. In this paper we resolve this open question, obtaining the first single-pass algorithm for this problem and for the same class of functions $f$ studied by Liang et al. Moreover, our error is $|f(A)-[f(A)]_k|_F^2 + operatorname{poly}(epsilon/k) |f(A)|_F^2$, where $|f(A)|_F^2$ is the sum of squares of Euclidean lengths of rows of $f(A)$. Thus our error is significantly smaller, as it removes the factor of $10$ and also $|f(A)|_F^2 leq |f(A)|_{1,2}^2$. We also give an algorithm for regression, pointing out an error in previous work, and empirically validate our results.
We show how to approximate a data matrix $mathbf{A}$ with a much smaller sketch $mathbf{tilde A}$ that can be used to solve a general class of constrained k-rank approximation problems to within $(1+epsilon)$ error. Importantly, this class of problem s includes $k$-means clustering and unconstrained low rank approximation (i.e. principal component analysis). By reducing data points to just $O(k)$ dimensions, our methods generically accelerate any exact, approximate, or heuristic algorithm for these ubiquitous problems. For $k$-means dimensionality reduction, we provide $(1+epsilon)$ relative error results for many common sketching techniques, including random row projection, column selection, and approximate SVD. For approximate principal component analysis, we give a simple alternative to known algorithms that has applications in the streaming setting. Additionally, we extend recent work on column-based matrix reconstruction, giving column subsets that not only `cover a good subspace for $bv{A}$, but can be used directly to compute this subspace. Finally, for $k$-means clustering, we show how to achieve a $(9+epsilon)$ approximation by Johnson-Lindenstrauss projecting data points to just $O(log k/epsilon^2)$ dimensions. This gives the first result that leverages the specific structure of $k$-means to achieve dimension independent of input size and sublinear in $k$.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا