ﻻ يوجد ملخص باللغة العربية
We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain the first linear time-approximation schemes for a number of well-studied fundamental problems concerning clustering of binary vectors and low-rank approximation of binary matrices. Among the problems solvable by our approach are textsc{Low GF(2)-Rank Approximation}, textsc{Low Boolean-Rank Approximation}, and vario
We provide a number of algorithmic results for the following family of problems: For a given binary mtimes n matrix A and integer k, decide whether there is a simple binary matrix B which differs from A in at most k entries. For an integer r, the sim
A number of recent works have studied algorithms for entrywise $ell_p$-low rank approximation, namely, algorithms which given an $n times d$ matrix $A$ (with $n geq d$), output a rank-$k$ matrix $B$ minimizing $|A-B|_p^p=sum_{i,j}|A_{i,j}-B_{i,j}|^p$
We consider $ell_1$-Rank-$r$ Approximation over GF(2), where for a binary $mtimes n$ matrix ${bf A}$ and a positive integer $r$, one seeks a binary matrix ${bf B}$ of rank at most $r$, minimizing the column-sum norm $||{bf A} -{bf B}||_1$. We show th
We give an asymptotic approximation scheme (APTAS) for the problem of packing a set of circles into a minimum number of unit square bins. To obtain rational solutions, we use augmented bins of height $1+gamma$, for some arbitrarily small number $gamm
We give polynomial-time approximation schemes for monotone maximization problems expressible in terms of distances (up to a fixed upper bound) and efficiently solvable in graphs of bounded treewidth. These schemes apply in all fractionally treewidth-