ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic group testing to control and monitor disease progression in a population

74   0   0.0 ( 0 )
 نشر من قبل Sundara Rajan Srinivasavaradhan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of a pandemic like COVID-19, and until most people are vaccinated, proactive testing and interventions have been proved to be the only means to contain the disease spread. Recent academic work has offered significant evidence in this regard, but a critical question is still open: Can we accurately identify all new infections that happen every day, without this being forbiddingly expensive, i.e., using only a fraction of the tests needed to test everyone everyday (complete testing)? Group testing offers a powerful toolset for minimizing the number of tests, but it does not account for the time dynamics behind the infections. Moreover, it typically assumes that people are infected independently, while infections are governed by community spread. Epidemiology, on the other hand, does explore time dynamics and community correlations through the well-established continuous-time SIR stochastic network model, but the standard model does not incorporate discrete-time testing and interventions. In this paper, we introduce a discrete-time SIR stochastic block model that also allows for group testing and interventions on a daily basis. Our model can be regarded as a discrete version of the continuous-time SIR stochastic network model over a specific type of weighted graph that captures the underlying community structure. We analyze that model w.r.t. the minimum number of group tests needed everyday to identify all infections with vanishing error probability. We find that one can leverage the knowledge of the community and the model to inform nonadaptive group testing algorithms that are order-optimal, and therefore achieve the same performance as complete testing using a much smaller number of tests.



قيم البحث

اقرأ أيضاً

77 - Anv{z}e Slosar 2020
When testing for infections, the standard method is to test each subject individually. If testing methodology is such that samples from multiple subjects can be efficiently combined and tested at once, yielding a positive results if any one subject i n the subgroup is positive, then one can often identify the infected sub-population with a considerably lower number of tests compared to the number of test subjects. We present two such methods that allow an increase in testing efficiency (in terms of total number of test performed) by a factor of $approx$ 10 if population infection rate is $10^{-2}$ and a factor of $approx$50 when it is $10^{-3}$. Such methods could be useful when testing large fractions of the total population, as will be perhaps required during the current coronavirus pandemic.
233 - Alice Corbella 2017
Influenza remains a significant burden on health systems. Effective responses rely on the timely understanding of the magnitude and the evolution of an outbreak. For monitoring purposes, data on severe cases of influenza in England are reported weekl y to Public Health England. These data are both readily available and have the potential to provide valuable information to estimate and predict the key transmission features of seasonal and pandemic influenza. We propose an epidemic model that links the underlying unobserved influenza transmission process to data on severe influenza cases. Within a Bayesian framework, we infer retrospectively the parameters of the epidemic model for each seasonal outbreak from 2012 to 2015, including: the effective reproduction number; the initial susceptibility; the probability of admission to intensive care given infection; and the effect of school closure on transmission. The model is also implemented in real time to assess whether early forecasting of the number of admission to intensive care is possible. Our model of admissions data allows reconstruction of the underlying transmission dynamics revealing: increased transmission during the season 2013/14 and a noticeable effect of Christmas school holiday on disease spread during season 2012/13 and 2014/15. When information on the initial immunity of the population is available, forecasts of the number of admissions to intensive care can be substantially improved. Readily available severe case data can be effectively used to estimate epidemiological characteristics and to predict the evolution of an epidemic, crucially allowing real-time monitoring of the transmission and severity of the outbreak.
Ability to quantify and predict progression of a disease is fundamental for selecting an appropriate treatment. Many clinical metrics cannot be acquired frequently either because of their cost (e.g. MRI, gait analysis) or because they are inconvenien t or harmful to a patient (e.g. biopsy, x-ray). In such scenarios, in order to estimate individual trajectories of disease progression, it is advantageous to leverage similarities between patients, i.e. the covariance of trajectories, and find a latent representation of progression. Most of existing methods for estimating trajectories do not account for events in-between observations, what dramatically decreases their adequacy for clinical practice. In this study, we develop a machine learning framework named Coordinatewise-Soft-Impute (CSI) for analyzing disease progression from sparse observations in the presence of confounding events. CSI is guaranteed to converge to the global minimum of the corresponding optimization problem. Experimental results also demonstrates the effectiveness of CSI using both simulated and real dataset.
118 - Ahmad El Shoghri 2020
The recent outbreak of a novel coronavirus and its rapid spread underlines the importance of understanding human mobility. Enclosed spaces, such as public transport vehicles (e.g. buses and trains), offer a suitable environment for infections to spre ad widely and quickly. Investigating the movement patterns and the physical encounters of individuals on public transit systems is thus critical to understand the drivers of infectious disease outbreaks. For instance previous work has explored the impact of recurring patterns inherent in human mobility on disease spread, but has not considered other dimensions such as the distance travelled or the number of encounters. Here, we consider multiple mobility dimensions simultaneously to uncover critical information for the design of effective intervention strategies. We use one month of citywide smart card travel data collected in Sydney, Australia to classify bus passengers along three dimensions, namely the degree of exploration, the distance travelled and the number of encounters. Additionally, we simulate disease spread on the transport network and trace the infection paths. We investigate in detail the transmissions between the classified groups while varying the infection probability and the suspension time of pathogens. Our results show that characterizing individuals along multiple dimensions simultaneously uncovers a complex infection interplay between the different groups of passengers, that would remain hidden when considering only a single dimension. We also identify groups that are more influential than others given specific disease characteristics, which can guide containment and vaccination efforts.
Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the origin of this feature by studying simple agent--based models of language dynamics, where each agent adopts an inflectional state for a verb and may change it upon interaction with other agents. At the same time, agents are replaced at some rate by new agents adopting the regular form. In models with only two inflectional states (regular and irregular), we observe that either all verbs regularize irrespective of their frequency, or a continuous transition occurs between a low frequency state where the lemma becomes fully regular, and a high frequency one where both forms coexist. Introducing a third (mixed) state, wherein agents may use either form, we find that a third, qualitatively different behavior may emerge, namely, a discontinuous transition in frequency. We introduce and solve analytically a very general class of three--state models that allows us to fully understand these behaviors in a unified framework. Realistic sets of interaction rules, including the well-known Naming Game (NG) model, result in a discontinuous transition, in agreement with recent empirical findings. We also point out that the distinction between speaker and hearer in the interaction has no effect on the collective behavior. The results for the general three--state model, although discussed in terms of language dynamics, are widely applicable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا