ﻻ يوجد ملخص باللغة العربية
The recent outbreak of a novel coronavirus and its rapid spread underlines the importance of understanding human mobility. Enclosed spaces, such as public transport vehicles (e.g. buses and trains), offer a suitable environment for infections to spread widely and quickly. Investigating the movement patterns and the physical encounters of individuals on public transit systems is thus critical to understand the drivers of infectious disease outbreaks. For instance previous work has explored the impact of recurring patterns inherent in human mobility on disease spread, but has not considered other dimensions such as the distance travelled or the number of encounters. Here, we consider multiple mobility dimensions simultaneously to uncover critical information for the design of effective intervention strategies. We use one month of citywide smart card travel data collected in Sydney, Australia to classify bus passengers along three dimensions, namely the degree of exploration, the distance travelled and the number of encounters. Additionally, we simulate disease spread on the transport network and trace the infection paths. We investigate in detail the transmissions between the classified groups while varying the infection probability and the suspension time of pathogens. Our results show that characterizing individuals along multiple dimensions simultaneously uncovers a complex infection interplay between the different groups of passengers, that would remain hidden when considering only a single dimension. We also identify groups that are more influential than others given specific disease characteristics, which can guide containment and vaccination efforts.
Outbreaks of infectious diseases present a global threat to human health and are considered a major health-care challenge. One major driver for the rapid spatial spread of diseases is human mobility. In particular, the travel patterns of individuals
Coronavirus outbreak is one of the most challenging pandemics for the entire human population of the planet Earth. Techniques such as the isolation of infected persons and maintaining social distancing are the only preventive measures against the epi
Multiple scales in metapopulations can give rise to paradoxical behaviour: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilised in the well-mixed limit due to th
Identifying influential nodes that can jointly trigger the maximum influence spread in networks is a fundamental problem in many applications such as viral marketing, online advertising, and disease control. Most existing studies assume that social i
In the context of a pandemic like COVID-19, and until most people are vaccinated, proactive testing and interventions have been proved to be the only means to contain the disease spread. Recent academic work has offered significant evidence in this r